[1]宋宗鹏,章瑛,蒋凌峰,等.钙钛矿CsPbBr3中光生载流子的动力学行为[J].深圳大学学报理工版,2019,36(No.5(473-598)):557-563.[doi:10.3724/SP.J.1249.2019.05557]
 SONG Zongpeng,ZHANG Ying,JIANG Lingfeng,et al.Dynamics of photo-excited carriers in CsPbBr3 perovskite[J].Journal of Shenzhen University Science and Engineering,2019,36(No.5(473-598)):557-563.[doi:10.3724/SP.J.1249.2019.05557]
点击复制

钙钛矿CsPbBr3中光生载流子的动力学行为()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.5(473-598)
页码:
557-563
栏目:
光电工程
出版日期:
2019-09-18

文章信息/Info

Title:
Dynamics of photo-excited carriers in CsPbBr3 perovskite
文章编号:
201905013
作者:
宋宗鹏123章瑛23蒋凌峰3裴继红1阮双琛23
1)深圳大学电子与信息工程学院,广东深圳 518060
2)深圳技术大学新材料与新能源学院,广东深圳 518118
3)深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,广东省微纳光机电工程重点实验室,深圳大学物理与光电工程学院,广东深圳 518060
Author(s):
SONG Zongpeng123 ZHANG Ying23 JIANG Lingfeng3 PEI Jihong1 and RUAN Shuangchen23
1) College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong Province, P.R.China
3) Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
纳米材料钙钛矿瞬态吸收光谱超快动力学奇异值分解全局拟合
Keywords:
nanomaterial perovskite transient absorption spectra ultrafast dynamics singular value decomposition global fitting
分类号:
O433;O472
DOI:
10.3724/SP.J.1249.2019.05557
文献标志码:
A
摘要:
钙钛矿材料的光电性能十分优异,可应用于光电器件,且钙钛矿中光生载流子的动力学行为可以决定光电器件的性能.本研究利用泵浦探测瞬态吸收光谱研究CsPbBr3量子点被激发后光生载流子的动力学行为,通过奇异值分解及全局拟合研究了CsPbBr3量子点被光激发后的瞬态吸收光谱.实验结果表明,激子间的耦合会导致CsPbBr3量子点的能带边沿发生红移,而Burstein-Moss效应会引起其能带边沿发生蓝移.结果同时揭示了CsPbBr3量子点中光生载流子的动力学过程,以及与之对应的指前相关因子光谱,其中,热载流子的弛豫时间约为0.4 ps,10 ps和100 ps量级的衰减时间可归结为双激子以及带电激子的寿命,而纳秒量级的衰减时间可归结为激子的辐射复合.
Abstract:
Perovskite materials have outstanding photoelectric properties and can be used in optoelectronic devices. The dynamics of photo-excited carriers in the perovskite can determine the photoelectric properties of these optoelectronic devices. In this paper, the dynamics of photo-excited carriers in CsPbBr3 quantum dots is studied via pump-probe transient absorption spectroscopy, and the transient absorption spectrum is analyzed by singular value decomposition and global fitting. The results show the red-shift and blue-shift of the band edge can be attributed to the exciton-exciton interaction and Burstein-Moss effect, respectively. The results also reveal the dynamics and corresponding preexponential factors spectra of photo-excited carriers. The relaxation time of hot carriers is 0.4 ps, decay times in the order of ten picoseconds and hundred picoseconds can be attributed to the lifetime of both double excitons and charged excitons, while the decay time on the order of nanoseconds can be attributed to the radiative recombination of excitons.

参考文献/References:

[1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009,131(17):6050-6051.
[2] WERNER J, WENG C H, WALTER A, et al. Efficient monolithic perovskite/silicon random solar cell with cell area > 1 cm2[J]. Journal of Physical Chemistry Letters, 2016,7(1):161-166.
[3] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals ofcesium lead halide perovskites (CsPbX3, X = Cl, Br, I)[J]. Nano Letters, 2015, 15(8):5635-5640.
[4] XING Guichuan, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13(5): 476-480.
[5] YAKUNIN S, PROTESESCU L, KRIEG F ,et al . Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056.
[6] BI Dongqin, TRESS W, DAR M I, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Science Advances, 2016, 2(1): e1501170.
[7] TAN Zikuan, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692.
[8] FANG Yanjun, DONG Qingfeng, SHAO Yuchuan, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9(10): 679-687.
[9] ZHU Haiming, FU Yongping, MENG Fei, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6): 636-642.
[10] JEONE N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9): 897-903.
[11] CHUNG H, JUNG S I, KIM H J, et al. Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX3, X=Br and I) perovskite nanocrystals[J]. Angewandte Chemie, 2017, 129(15): 4224-4228.
[12] CASTANEDA J A, NAGAMINE G, YASSITEPE E, et al. Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement[J]. ACS Nano, 2016, 10(9): 8603-8609.
[13] XU Yanqing, CHEN Qi, ZHANG Chunfeng, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers[J]. Journal of the American Chemical Society, 2016, 138(11): 3761-3768.
[14] MAKAROV N S, GUO S, ISAIENKO O, et al. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots[J]. Nano Letters, 2016, 16(4): 2349-2362.
[15] YARITA N, TAHARA H, IHARA T, et al. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy[J]. Journal of Physical Chemistry Letters, 2017, 8(7): 1413-1418.
[16] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156) : 341-344.
[17] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589.
[18] PONSECA C S, SAVENIJE T J, ABDELLAH M, et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-Long balanced mobilities, and slow recombination[J]. Journal of the American Chemical Society, 2014, 136(14): 5189-5192.
[19] MANSER J S, KAMAT P V. Band filling with free charge carriers in organonietal halide perovskites[J]. Nature Photonics, 2014, 8(9): 737-743.
[20] KLIMOV V I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals[J]. Annual Review of Physical Chemistry, 2007, 58(1): 635-673.
[21] SUM T C, MATHEWS N, XING G, et al. Spectral features and charge dynamics of lead halide perovskites: origins and interpretations[J]. Accounts of Chemical Research, 2016, 49(2): 294-302.
[22] SABA M, QUOCHI F, MURA A, et al. Excited state properties of hybrid perovskites[J]. Accounts of Chemical Research, 2016, 49(1): 166-173.
[23] 翁宇翔,陈海龙.超快激光光谱原理与技术基础[M]. 北京: 化学工业出版社, 2013: 298-309.
WENG Yuxiang, CHEN Hailong. Ultrafast spectroscopy principles and techniques[M]. Beijing: Chemical Industry Press, 2013: 298-309.(in Chinese).
[24] KLIMOV V I, MCBRANCH D W. Femtosecond 1p-to-1s electron relaxation in strongly confined semiconductor nanocrystals[J]. Physical Review Letters, 1998, 80(18): 4028-4031.
[25] TACHIKAWA T, KARIMATA I, KOBORI Y. Surface charge trapping in organolead halide perovskites explored by single-particle photoluminescence imaging[J]. Journal of Physical Chemistry Letters, 2015, 6(16): 3195-3201.
[26] SCHALLER R D, PIETRYGA J M, GOUPALOV S V, et al. Breaking the phonon bottleneck in semiconductor nanocrystals via multi phonon emission induced by intrinsic nonadiabatic interactions[J]. Physical Review Letters, 2005, 95(19): 196401.

相似文献/References:

[1]周晓明,辛红,游志军,等.CePO4纳米结构合成[J].深圳大学学报理工版,2010,27(2):211.
 ZHOU Xiao-ming,XIN Hong,YOU Zhi-jun,et al.Synthesis of nano-structured CePO4 films[J].Journal of Shenzhen University Science and Engineering,2010,27(No.5(473-598)):211.
[2]李正操,余晓毅,苗伟,等.氧化钇掺杂铁薄膜的制备及热稳定行为[J].深圳大学学报理工版,2010,27(3):273.
 LI Zheng-cao,YU Xiao-yi,MIAO Wei,et al.The preparation and behavior in annealing of the yttria dispersed Ferrum films[J].Journal of Shenzhen University Science and Engineering,2010,27(No.5(473-598)):273.
[3]马运柱,李静,刘文胜.钨晶须制备及生长机理研究[J].深圳大学学报理工版,2011,28(No.2(095-188)):183.
 MA Yun-zhu,LI Jing,and LIU Wen-sheng.Preparation and growth mechanism of tungsten whiskers[J].Journal of Shenzhen University Science and Engineering,2011,28(No.5(473-598)):183.
[4]曹慧群,张欣鹏,樊先平,等.铜铟镓硒纳米颗粒制备技术的研究进展[J].深圳大学学报理工版,2012,29(No.3(189-282)):247.[doi:10.3724/SP.J.1249.2012.03247]
 CAO Hui-qun,ZHANG Xin-peng,FAN Xian-ping,et al.Research progress on synthesis of CuIn1-xGaxSe2 nanoparticles[J].Journal of Shenzhen University Science and Engineering,2012,29(No.5(473-598)):247.[doi:10.3724/SP.J.1249.2012.03247]
[5]汝丽丽,孟月东,陈龙威.氦等离子体前处理对多晶硅薄膜性能的影响[J].深圳大学学报理工版,2013,30(No.4(331-440)):398.[doi:10.3724/SP.J.1249.2013.04398]
 Ru Lili,Meng Yuedong,and Chen Longwei.Influence of Helium plasma pre-treatment on properties of polycrystalline silicon films[J].Journal of Shenzhen University Science and Engineering,2013,30(No.5(473-598)):398.[doi:10.3724/SP.J.1249.2013.04398]
[6]徐宏,刘剑洪,蔡弘华,等.纳米氧化铈的制备及其催化性能研究[J].深圳大学学报理工版,2002,19(2):13.
 XU Hong,LIU Jian-hong,CAI Hong-hua and TIAN De-yu.Synthesis of Nanometer-sized Cerium Oxide and Its Effect on Catalyzing Decomposition of Absorbent Powder[J].Journal of Shenzhen University Science and Engineering,2002,19(No.5(473-598)):13.
[7]李春,胡晓影,何天应,等.二维原子晶体半导体转移技术研究进展[J].深圳大学学报理工版,2018,35(No.3(221-330)):257.[doi:10.3724/SP.J.1249.2018.03257]
 LI Chun,HU Xiaoying,HE Tianying,et al.Recent progress on transfer techniques oftwo-dimensional atomically thin semiconductor[J].Journal of Shenzhen University Science and Engineering,2018,35(No.5(473-598)):257.[doi:10.3724/SP.J.1249.2018.03257]
[8]李启华,邓立波,张培新.钙钛矿太阳能电池二氧化锡电子传输层的优化[J].深圳大学学报理工版,2019,36(No.4(347-472)):392.[doi:10.3724/SP.J.1249.2019.04392]
 LI Qihua,DENG Libo,and ZHANG Peixin.Optimization of tin oxide-based electron transport layer for perovskite solar cells[J].Journal of Shenzhen University Science and Engineering,2019,36(No.5(473-598)):392.[doi:10.3724/SP.J.1249.2019.04392]

备注/Memo

备注/Memo:
Received:2018-05-28;Revised:2018-09-30;Accepted:2018-12-25
Foundation:National Key Research and Development Program of China(2016YFA0401100);National Natural Science Foundation of China (61575129);Major Science and Technology Project of Guangdong Province(2014B010131006);Shenzhen Science and Technology Basic Research Foundation (JCYJ20180305125000525)
Corresponding author:Professor RUAN Shuangchen. E-mail: scruan@szu.edu.cn
Citation:SONG Zongpeng, ZHANG Ying, JIANG Lingfeng, et al. Dynamics of photo-excited carriers in CsPbBr3 perovskite[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(5): 557-563.(in Chinese)
基金项目:国家重点研发计划资助项目(2016YFA0401100);国家自然科学基金资助项目(61575129);广东省重大科技专项资助项目(2014B010131006);深圳市科技基础研究计划资助项目(JCYJ20180305125000525)
作者简介:宋宗鹏(1987—),深圳大学博士后研究人员.研究方向:泵浦探测技术.E-mail:songzongpeng1986@icloud.com
引文:宋宗鹏,章瑛,蒋凌峰,等.钙钛矿CsPbBr3中光生载流子的动力学行为[J]. 深圳大学学报理工版,2019,36(5):557-563.
更新日期/Last Update: 2019-09-30