[1]祝铭,王梦涵,屈军乐.远程LIBS结合拉曼光谱探测系统检测物质成分分布[J].深圳大学学报理工版,2019,36(No.5(473-598)):538-543.[doi:10.3724/SP.J.1249.2019.05538]
 ZHU Ming,WANG Menghan,et al.A laser induced breakdown spectroscopy and Raman spectroscopy combined remote detection system for material composition analysis[J].Journal of Shenzhen University Science and Engineering,2019,36(No.5(473-598)):538-543.[doi:10.3724/SP.J.1249.2019.05538]
点击复制

远程LIBS结合拉曼光谱探测系统检测物质成分分布()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.5(473-598)
页码:
538-543
栏目:
光电工程
出版日期:
2019-09-18

文章信息/Info

Title:
A laser induced breakdown spectroscopy and Raman spectroscopy combined remote detection system for material composition analysis
文章编号:
201905010
作者:
祝铭12王梦涵1屈军乐1
1)深圳大学物理与光电工程学院,光电子器件与系统教育部/广东省重点实验室,广东深圳 518060
2)中国科学院深圳先进技术研究院光电工程技术中心,广东深圳 518055
Author(s):
ZHU Ming1 2 WANG Menghan1 and QU Junle1
1) College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Center of Optoelectronic Engineering Technologies, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, P.R.China
关键词:
光学工程激光诱导击穿光谱拉曼光谱远程检测二维元素分布矿石成分分析
Keywords:
optical engineering laser induced breakdown spectroscopy (LIBS) Raman spectroscopy (RS) remote detection 2-dimensional mapping mineral composition analysis
分类号:
O439
DOI:
10.3724/SP.J.1249.2019.05538
文献标志码:
A
摘要:
发展用于远程探测物质成分的激光诱导击穿光谱仪(laser induced breakdown spectroscopy, LIBS)和拉曼光谱复合检测系统,其能实现以2 mm的扫描精度对二维区域进行扫描,并在30 m的最大距离处检测样品中的元素含量及其表面分布. 通过二维扫描系统分析30 m距离处硅灰石表面的Fe元素分布. 根据LIBS与拉曼信号的时间差异,采用门控增强型CCD相机分别采集LIBS和拉曼光谱信号. 实验结果表明,该系统可用于对铝合金的分类识别,并可用于合金分选过程,从而节约大量的资源和能源. 该系统还可用于远程矿物识别,矿物和岩石可以通过拉曼光谱分析得出分子信息,如C—O、S—O和Si—O的拉伸模式,从而区分出矿物和岩石的种类,即碳酸盐、硫酸盐和硅酸盐等.
Abstract:
We develop a laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy (RS) combined detection system for remote detection of substance composition. It can scan a 2-dimensional region with scanning accuracy of 2 mm and detect element contents and elementary surface distribution in samples at the maximum distance of 30 m away from the detector. Using our 2-dimensional scanning system, we analyze Fe element distribution on the surface of wollastonite at a distance of 30 m. According to the time difference between LIBS signal and Raman signal, both LIBS and Raman spectrum signals are collected by a gated intensified CCD (ICCD) camera. The experimental result shows that the system can be applied to identify the type of aluminum alloys and also be used in alloy sorting process to save resources and energy. The system can also be applied in remote mineral identification. Molecular information such as C—O, S—O and Si—O stretching patterns can be obtained from Raman spectroscopy analysis of minerals and rocks, thus distinguishing minerals and rocks, i.e. carbonates, sulphates and silicates.

参考文献/References:

[1] HAHN D W, OMENETTO N. Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community[J]. Applied Spectroscopy, 2010, 64(12): 335A-366A.
[2] HAHN D W, OMENETTO N. Laser-induced breakdown spectroscopy(LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields[J]. Applied Spectroscopy, 2012, 66(4): 347-419.
[3] LYON L A, KEATING C D, FOX A P, et al. Raman spectroscopy[J]. Analytical Chemistry, 1998, 70(12): 341-362.
[4] GIAKOUMAKI A, OSTICIOLI I, ANGLOS D. Spectroscopic analysis using a hybrid LIBS-Raman system[J]. Applied Physics A, 2006, 83(4): 537-541.
[5] HOEHSE M, MORY D, FLOREK S, et al. A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(11/12): 1219-1227.
[6] SHARMA S K, MISRA A K, CLEGG S M, et al. Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 80(1): 75-81.
[7] FANTONI R, CANEVE L, COLAO F, et al. Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis - a review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(10): 1097-1108.
[8] CARRANZA J E, GIBB E, SMITH S B, et al. Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy[J]. Applied Optics, 2003, 42(30): 6016-6021.
[9] AWONUSI A, MORRIS M D, TECKLENBURG M M.Carbonate assignment and calibration in the raman spectrum of apatite[J].Calcified Tissue International, 2007, 81(1): 46-52.
[10] SUN Junmin, WU Zeguang, CHENG Hongfei, et al. A Raman spectroscopic comparison of calcite and dolomite[J]. Spectrochimica Acta: Part A, 2014, 117(3): 158-162.
[11] SHARMA S K, MISRA A K, LUCEY P G, et al. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 73(3): 468-476.
[12] TOMIOKA N, KONDO H, KUNIKATA A, et al. Pressure-induced amorphization of albitic plagioclase in an externally heated diamond anvil cell[J]. Geophysical Research Letters, 2010, 37(21): L21301-L21305.
[13] SHARMA S, VIRGO D, MYSEN B. Raman study of the coordination of aluminum in jadeite melts as a function of pressure[J]. American Mineralogist, 1979, 64: 779-787.
[14] DIMOVA M, PANCZER G, GAFT M. Spectroscopic study of barite from the Kremikovtsi deposit (Bulgaria) with implication for its origin[J]. Annales Geologiques De La Peninsule Balkanique, 2006, 67: 101-108.
[15] ALIAN W, KUEBLER K E, HASKIN L A. Raman spectroscopic characterization of the feldspars - implications for in situ surface mineral characterization in planetary explorations[C]// The 34th Annual Lunar and Planetary Science Conference. League City, USA:[S. l.], 2003: 1676.
[16] Romanian Database of Raman Spectroscopy[DB/OL]. (2018-05-12)[2018-03-12 ]. http://rdrs.uaic.ro/
[17] NIST: Atomic spectra database[DB/OL]. (2018-10-01)[03/12/2018]. https://www.nist.gov/pml/atomic-spectra-database

相似文献/References:

[1]李春波,余春晖,柴金龙,等.超高速摄影仪转镜模态数值仿真分析[J].深圳大学学报理工版,2011,28(No.6(471-564)):513.
 LI Chun-bo,YU Chun-hui,CHAI Jin-long,et al.Modal analysis through numerical and experimental methods for rotating mirror of ultra-high speed camera[J].Journal of Shenzhen University Science and Engineering,2011,28(No.5(473-598)):513.
[2]李春波,余春晖,李景镇,等.基于拓扑理论的超高速摄影仪转镜结构设计[J].深圳大学学报理工版,2012,29(No.4(283-376)):304.[doi:10.3724/SP.J.1249.2012.04304]
 LI Chun-bo,YU Chun-hui,LI Jing-zhen,et al.Structure design of rotating mirror based on the topology optimization theory for ultra-high speed camera[J].Journal of Shenzhen University Science and Engineering,2012,29(No.5(473-598)):304.[doi:10.3724/SP.J.1249.2012.04304]
[3]雷耀虎,刘鑫,郭金川,等.超声对X射线分析光栅铋填充率影响研究[J].深圳大学学报理工版,2016,33(No.2(111-220)):138.[doi:10.3724/SP.J.1249.2016.02138]
 Lei Yaohu,Liu Xin,Guo Jinchuan,et al.Influence of ultrasonic on filling ratio of Bi in X-ray analyzer gratings[J].Journal of Shenzhen University Science and Engineering,2016,33(No.5(473-598)):138.[doi:10.3724/SP.J.1249.2016.02138]
[4]雷耀虎,黄建衡,刘鑫,等.X射线微分相衬成像系统莫尔条纹对比度的改善[J].深圳大学学报理工版,2016,33(No.5(441-550)):506.[doi:10.3724/SP.J.1249.2016.05506]
 Lei Yaohu,Huang Jianheng,Liu Xin,et al.Improvement of visibility of moiré fringe in X-ray differential phase-contrast imaging[J].Journal of Shenzhen University Science and Engineering,2016,33(No.5(473-598)):506.[doi:10.3724/SP.J.1249.2016.05506]
[5]王冬冬,谢晓华,任席奎,等.1 764 nm调Q锁模自拉曼激光器研究[J].深圳大学学报理工版,2016,33(No.5(441-550)):501.[doi:10.3724/SP.J.1249.2016.05501]
 Wang Dongdong,Xie Xiaohua,Ren Xikui,et al.Study on Q-switched and mode-locked self-Raman laser at 1 764[J].Journal of Shenzhen University Science and Engineering,2016,33(No.5(473-598)):501.[doi:10.3724/SP.J.1249.2016.05501]
[6]黄建衡,雷耀虎,刘鑫,等.X射线大视场相衬成像位移误差的数值分析[J].深圳大学学报理工版,2017,34(No.1(001-110)):8.[doi:10.3724/SP.J.1249.2017.01008]
 Huang Jianheng,Lei Yaohu,Liu Xin,et al.Numerical analysis of shift error in X-ray phase contrast imaging for large field of view[J].Journal of Shenzhen University Science and Engineering,2017,34(No.5(473-598)):8.[doi:10.3724/SP.J.1249.2017.01008]
[7]洪振厚,周彬,郭金川.锥束X射线CT图像重建的新型滤波函数[J].深圳大学学报理工版,2017,34(No.3(221-330)):284.[doi:10.3724/SP.J.1249.2017.03284]
 Hong Zhenhou,Zhou Bin,and Guo Jinchuan.A new filter function for the image reconstruction of cone beam X-ray CT[J].Journal of Shenzhen University Science and Engineering,2017,34(No.5(473-598)):284.[doi:10.3724/SP.J.1249.2017.03284]
[8]刘伟,刘双龙,陈丹妮,等.CARS显微成像系统的空间分辨率标定[J].深圳大学学报理工版,2017,34(No.3(221-330)):272.[doi:10.3724/SP.J.1249.2017.03272]
 Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(No.5(473-598)):272.[doi:10.3724/SP.J.1249.2017.03272]
[9]李恒,陈丹妮,于斌,等.DH-PSF三维动态多粒子追踪在活细胞成像的应用[J].深圳大学学报理工版,2017,34(No.5(441-550)):526.[doi:10.3724/SP.J.1249.2017.05526]
 Li Heng,Chen Danni,et al.Application of DH-PSF three-dimensional dynamic multi-particle tracking method in living cell imaging[J].Journal of Shenzhen University Science and Engineering,2017,34(No.5(473-598)):526.[doi:10.3724/SP.J.1249.2017.05526]
[10]章瑛,郑吉林,齐红基,等.多层介质薄膜的陡边设计与研究[J].深圳大学学报理工版,2018,35(No.5(441-550)):484.[doi:10.3724/SP.J.1249.2018.05484]
 ZHANG Ying,ZHENG Jilin,QI Hongji,et al.Design and research of steep side of the multi-layer dielectric thin films[J].Journal of Shenzhen University Science and Engineering,2018,35(No.5(473-598)):484.[doi:10.3724/SP.J.1249.2018.05484]

备注/Memo

备注/Memo:
Received:2018-01-10;Accepted:2018-03-20
Foundation:National Natural Science Foundation of China (41603059, 31771584); National Key Research and Development Program of China (2016YFC14000701); Shenzhen Basic Research Project (JCYJ20160428092445411)
Corresponding author:Professor QU Junle. E-mail: jlqu@szu.edu.cn
Citation:ZHU Ming, WANG Menghan, QU Junle. A laser induced breakdown spectroscopy and Raman spectroscopy combined remote detection system for material composition analysis[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(5): 538-543.
基金项目:国家自然科学基金资助项目(41603059, 31771584);国家重点研发计划资助项目(2016YFC14000701); 深圳市基础研究资助项目(JCYJ20160428092445411)
作者简介:祝铭(1984—),中国科学院深圳先进技术研究院助理研究员、博士.研究方向:光谱传感与光谱分析.
E-mail:ming.zhu1@siat.ac.cn
引文:祝铭,王梦涵,屈军乐.远程LIBS结合拉曼光谱探测系统检测物质成分分布[J]. 深圳大学学报理工版,2019,36(5):538-543.(英文版)
更新日期/Last Update: 2019-09-30