[1]邱奕斌,陈倩倩,叶凡,等.氮流量对掺氮氧化亚铜薄膜性能的影响[J].深圳大学学报理工版,2019,36(No.5(473-598)):525-530.[doi:10.3724/SP.J.1249.2019.05525]
 QIU Yibin,CHEN Qianqian,et al.Effect of nitrogen flow rate on the properties of nitrogen-doped Cu2O[J].Journal of Shenzhen University Science and Engineering,2019,36(No.5(473-598)):525-530.[doi:10.3724/SP.J.1249.2019.05525]
点击复制

氮流量对掺氮氧化亚铜薄膜性能的影响()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.5(473-598)
页码:
525-530
栏目:
物理与应用物理
出版日期:
2019-09-18

文章信息/Info

Title:
Effect of nitrogen flow rate on the properties of nitrogen-doped Cu2O
文章编号:
201905008
作者:
邱奕斌12陈倩倩12叶凡12蔡兴民12张东平12范平12
1)深圳大学物理与光电工程学院,薄膜物理与应用研究所,广东深圳 518060
2)深圳市薄膜物理与应用重点实验室,广东深圳 518060
Author(s):
QIU Yibin1 2 CHEN Qianqian1 2 YE Fan1 2 CAI Xingmin1 2 ZHANG Dongping1 2 and FAN Ping1 2
1) College of Physics and Optoelectronic Engineering, Institute of Thin Film Physics and Applications, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Shenzhen Key Laboratory of Thin Film Physics and Application, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
凝聚态物理学氧化亚铜氮掺杂磁控溅射光电性能薄膜性质
Keywords:
condensed matter physics Cu2O nitrogen-doping magnetron sputtering optical and electric property characteristics of thin film
分类号:
O469;O47
DOI:
10.3724/SP.J.1249.2019.05525
文献标志码:
A
摘要:
氧化亚铜在光伏及光催化等领域有潜在应用,掺氮能增加其空穴浓度从而提高电导率,但氮在氧化亚铜的状态仍未被深入研究.在溅射压强等参数不变的条件下,逐步增加氮气流量,制备了一系列纯相的氮掺杂的氧化亚铜,并用X射线衍射、台阶仪、扫描电子显微镜、能量色散谱仪、拉曼光谱、X射线光电子能谱仪、霍尔效应及分光光度计等方法对所得样品进行分析.霍尔效应测试结果表明,氮掺杂能使氧化亚铜薄膜空穴浓度提高1个数量级.禁带宽度随氮气流量的增加而逐渐减小,氮在氧化亚铜中以β-N(氮原子)、α-N2(分子态氮,—NN—)及γ-N2(分子态氮,N≡N)3种形式存在,随着氮流量的增加,β-N的结合能的峰强不断增强,而α-N2的结合能的峰强不断减弱.氮流量为2标准立方厘米每分钟(sccm)时所得样品的电阻率最小.
Abstract:
Cuprous oxide (Cu2O) has the potential applications in photovoltaic and photocatalytic fields. Nitrogen-doping in Cu2O can improve the conductivity by increasing hole concentration.However, the chemical states of nitrogen in nitrogen-doped Cu2O have not been studied thoroughly.A series of nitrogen-doped Cu2O samples are prepared by increasing nitrogen flow rates and simultaneously keeping the sputtering pressure and other parameters unchanged. The samples are characterized by X-ray diffraction (XRD), step instrument, scanning electron microscope (SEM), energy dispersive spectrometer, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), spectrophotometer and Hall effect et al. The results of Hall effect measurement show that nitrogen-doping can increase the hole concentration by one order of magnitude.The band gap width decreases with the increase of nitrogen flow rate.The nitrogen in Cu2O is in three forms: β-N (nitrogen atom), α-N2(molecular nitrogen, —NN—)and γ-N2(molecular nitrogen, N≡N).With the increase of nitrogen gas flow rate, the peak of binding energy of β-N increases while that of α-N2 decreases.The sample prepared at the nitrogen flow rate of 2.0 sccm has the minimum resistivity among all samples.

参考文献/References:

[1] WANG Y, GHANBAJA J, HORWAT D, et al. Nitrogen chemical state in N-doped Cu2O thin films[J]. Applied Physics Letters, 2017, 110(13): 131902-1-131902-5.
[2] LV Peiwei, ZHENG Weifeng, LIN Limei, et al. I-V characteristics of ZnO/Cu2O thin film n-i-p heterojunction[J]. Physica B: Condensed Matter, 2011, 406(6/7): 1253-1257.
[3] CHEN Xinliang, CHEN Li, ZHOU Zhongxin, et al. Progress of Cu2O/ZnO oxide heterojunction solar cells[J]. Acta Physica Sinica,2018, 67(11): 118401-1-118401-11.
[4] JEONG S S,MITTIGA A,SALZA E,et al.Electrodeposited ZnO/Cu2O heterojunction solar cells[J]. Electrochimica Acta, 2008, 53(5): 2226-2231.
[5] BICCARI F, MALERBA C, MITTIGA A. Chlorine doping of Cu2O[J]. Solar Energy Materials and Solar Cells, 2010, 94(11): 1947-1952.
[6] ISHIZUKA S, KATO S, OKAMOTO Y, et al. Control of hole carrier density of polycrystalline Cu2O thin films by Si doping[J]. Applied Physics Letters, 2002, 80(6): 950-952.
[7] HERING K P, KANDZIA C, BENZ J, et al. Hydrogen induced mobility enhancement in RF sputtered Cu2O thin films[J]. Journal of Applied Physics, 2016, 120(18): 185705-1-185705-10.
[8] ISHIZUKA S, KATO S, MARUYAMA T, et al. Nitrogen doping into Cu2O thin films deposited by reactive radio-frequency magnetron sputtering[J]. Japanese Journal of Applied Physics, 2001, 40(4B): 2765-2768.
[9] NAKANO Y, SHU S, MORIKAWA T. Optical bandgap widening of p-type Cu2O films by nitrogen doping[J]. Applied Physics Letters, 2009, 94(2): 022111-1-022111-10.
[10] T-THIENPRASERT J, LIMPIJUMNONG S. Identification of nitrogen acceptor in Cu2O: first-principles study[J]. Applied Physics Letters, 2015, 107(22): 221905-1-221905-5.
[11] YE Fan, ZENG Junjie, QIU Yibin, et al. Deposition-rate controlled nitrogen-doping into cuprous oxide and its thermal stability[J]. Thin Solid Films, 2019, 674: 44-51.
[12] YE Fan, ZENG Junjie, QIU Yibin, et al. The optical and electrical properties of nitrogen-doped cuprous oxide annealed at different temperatures[J]. Surface and Coating Technology, 2019, 359: 360-365.
[13] Cu2O: Joint Committee on Powder Diffract. Standards-International Center for Diffraction Data Card,No.78-2076.[S].
[14] Cu: Joint Committee on Powder Diffract. Standards-International Center for Diffraction Data Card No.04-0836.[S].
[15] ZHANG Xinyu, WAN Yimao, BULLOCK J, et al. Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films[J]. Applied Physics Letters, 2016, 109(5): 052102-1-052102-5.
[16] SANDER T, REINDL C T, GIAR M, et al. Correlation of intrinsic point defects and the Raman modes of cuprous oxide[J]. Physical Review B, 2014, 90(4): 045203-1-045203-8.
[17] BENZ J L, HERING K P, KRAMM B, et al. The influence of nitrogen doping on the electrical and vibrational properties of Cu2O[J]. Physica Status Solidi B, 2017, 254(4): 1600421-1-1600421-5.
[18] SBERNA P M, CRUPI I, MOSCATELLI F, et al. Sputtered cuprous oxide thin films and nitrogen doping by ion implantation[J]. Thin Solid Films, 2016, 600: 71-75.
[19] YOON K H, CHOI W J, KANG D H. Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate[J]. Thin Solid Films, 2000, 372(1/2): 250-256.
[20] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
[21] SHINN N D, TSANG K L. Anomalous nitrogen-metal bonding on Cr(110) and Cr/W(110) overlayers[J]. Journal of Vacuum Science and Technology A, 1990, 8(3): 2449-2453.
[22] SHINN N D, TSANG K L. Strain-induced surface reactivity: low temperature Cr/W(110) nitridation[J]. Journal of Vacuum Science and Technology A, 1991, 9(3): 1558-1562.
[23] BITTENCOURT C, RUTAR M, UMEK P, et al. Molecular nitrogen in N-doped TiO2 nanoribbons[J]. RSC Advances, 2015, 5(30): 23350-23356.
[24] HOFFMANN P, PETTENKOFER C. Chemical nature of N-ions incorporated into epitaxial ZnO films[J]. Physica Status Solidi B, 2011, 248(2): 327-333.

相似文献/References:

[1]罗运文,李秀燕.磁场引发石墨烯从金属态到绝缘态的相变[J].深圳大学学报理工版,2016,33(No.2(111-220)):143.[doi:10.3724/SP.J.1249.2016.02143]
 Luo Yunwenand Li Xiuyan.Magnetic field induced metal-insulator phasetransition in graphene[J].Journal of Shenzhen University Science and Engineering,2016,33(No.5(473-598)):143.[doi:10.3724/SP.J.1249.2016.02143]
[2]陈聚龙,梁广兴,范平,等.HC(NH2)2PbI3钙钛矿薄膜单源真空热蒸发制备及性能表征[J].深圳大学学报理工版,2016,33(No.4(331-440)):344.[doi:10.3724/SP.J.1249.2016.04344]
 Chen Julong,Liang Guangxing,Fan Ping,et al.Synthesis and Characterization of HC(NH2)2PbI3 perovskite thin film prepared by single source thermal evaporation[J].Journal of Shenzhen University Science and Engineering,2016,33(No.5(473-598)):344.[doi:10.3724/SP.J.1249.2016.04344]
[3]缪春琼,蓝华斌,范平,等.双溶液法制备钙钛矿薄膜及其太阳能电池性能[J].深圳大学学报理工版,2017,34(No.5(441-550)):509.[doi:10.3724/SP.J.1249.2017.05509]
 Miao Chunqiong,Lan Huabin,Fan Ping,et al.Double-solutions effect on preparation of perovskite thin films and photovoltaic performance of related solar cells[J].Journal of Shenzhen University Science and Engineering,2017,34(No.5(473-598)):509.[doi:10.3724/SP.J.1249.2017.05509]

备注/Memo

备注/Memo:
Received:2019-05-18;Accepted:2019-07-25
Foundation:National Natural Science Foundation of China (61674107); Shenzhen Science and Technology Research Foundetion (JCYJ20170302150335518); Shenzhen Key Laboratory Program (ZDSYS201702281054 21966)
Corresponding author:Associate professor CAI Xingmin. E-mail: caixm@szu.edu.cn
Citation:QIU Yibing, CHEN Qianqian, YE Fan, et al. Effect of nitrogen flow rate on the properties of nitrogen-doped Cu2O[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(5): 525-530.(in Chinese)
基金项目:国家自然科学基金资助项目(61674107); 深圳市科技计划资助项目(JCYJ20170302150335518); 深圳市重点实验室资助项目(ZDSYS20170228105421966)
作者简介:邱奕斌(1997—),深圳大学本科生.研究方向:能源薄膜与器件.E-mail:2015071121@email.szu.edu.cn
叶凡(1978—),深圳大学副教授、博士.研究方向:半导体薄膜材料.E-mail:yefan@szu.edu.cn
邱奕斌、叶凡为共同第一作者.
引文:邱奕斌,陈倩倩,叶凡,等.氮流量对掺氮氧化亚铜薄膜性能的影响[J]. 深圳大学学报理工版,2019,36(5):525-530.
更新日期/Last Update: 2019-09-30