[1]陶红,谭晓青,李晓纯.基于相位涨落的量子随机数发生器理论模型[J].深圳大学学报理工版,2019,36(No.5(473-598)):519-524.[doi:10.3724/SP.J.1249.2019.05519]
 TAO Hong,TAN Xiaoqing,and LI Xiaochun.Theoretical model of quantum random number generator based on phase fluctuation[J].Journal of Shenzhen University Science and Engineering,2019,36(No.5(473-598)):519-524.[doi:10.3724/SP.J.1249.2019.05519]
点击复制

基于相位涨落的量子随机数发生器理论模型()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.5(473-598)
页码:
519-524
栏目:
物理与应用物理
出版日期:
2019-09-18

文章信息/Info

Title:
Theoretical model of quantum random number generator based on phase fluctuation
文章编号:
201905007
作者:
陶红谭晓青李晓纯
暨南大学信息科学技术学院, 广东广州 510632
Author(s):
TAO Hong TAN Xiaoqing and LI Xiaochun
College of Information Science and Technology, Jinan University, Guangzhou 510632,Guangdong Province, P.R.China
关键词:
量子力学量子随机数发生器相位涨落延时线圈随机正态分布
Keywords:
quantum mechanics quantum random number generator phase fluctuation delay coil random normal distribution
分类号:
TP309
DOI:
10.3724/SP.J.1249.2019.05519
文献标志码:
A
摘要:
密码算法的安全性基于密钥的安全性,密钥本质上是随机数.伪随机数基于算法的复杂度,理论上无法保证其真随机性,量子力学的不确定性为真随机数发生器提供了一个完美的熵源.基于YANG等提出的利用量子相位涨落获取实时量子随机数方案,设计了一个加入两个延时线圈的量子随机数光干涉理论模型,并对该理论模型进行随机性分析,所得理论模型具有随机正态分布特征.
Abstract:
The security of cryptography algorithms is based on the security of the key and the secret key is essentially random number. Pseudo-random numbers based on the complexity of the algorithm can not guarantee the true randomness theoretically. The uncertainty of quantum mechanics provides a perfect source of entropy for the true random number generator. In this paper, we analyze the real-time quantum random number scheme based on quantum phase fluctuation given by YANG et al. On the basis of this scheme, a theoretical model of quantum random number optical interference with two delay coils is designed, and the randomness of the theoretical model is analyzed. The theoretical model obtained has the characteristics of random normal distribution.

参考文献/References:

[1] BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560: 7-11.
[2] EKERT A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67: 661-663.
[3] MA Xingfeng, XIAO Yuan, ZHU Cao, et al. Quantum random number generation[J]. NPJ Quantum Infor-mation, 2016, 2(1):16021.
[4] STIPEVIC M, ROGINA B M. Quantum random number generator based on photonic emission in semiconductors[J]. Review of Scientific Instruments, 2007, 78(4): 045104.
[5] WAYNE M A, KWIAT P G. Low-bias high-speed quantum number generator via shaped optical pulses[J]. Optics Express, 2010, 18(9): 9351-9357.
[6] JENNEWEIN T, ACHLEITNER U, WEIHS G, et al. A fast and compact quantum random number generator[J]. Review of Scientific Instruments, 2000, 71(4): 1675-1680.
[7] WAHL M, LEIFGEN M, BERLIN M, et al. An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements[J]. Applied Physics Letters, 2011, 98: 171105.
[8] GABRIEL C, WITTMANN C, SYCH D, et al. A generator for unique quantum random numbers based on vacuum states[J]. Nature Photonics, 2010, 4: 711-715.
[9] SYMUL T, ASSAD S M, LAM P K. Real time demonstration of high bitrate quantum random number generation with coherent laser light[J]. Applied Physics Letters, 2011, 98: 231103.
[10] PIRONIO S, ACN A, MASSAR S, et a1. Random numbers certified by Bell’s theorem[J]. Nature, 2010, 464(7291):1021-1024.
[11] XU Feihu, QI Bing, MA Xiongfeng, et al. Ultrafast quantum random number generation based on quantum phase fluctuations[J]. Optics Express, 2012, 20(11): 12366.
[12] SANGUINETTI B, MARTINA, ZBINDEN H, et al. Quantum random number generation on a mobile phone[J]. Physical Review X, 2015, 4(3): 031056.
[13] WEI Wei, GUO Hong. Bias-free true random-number generator[J]. Optics Letters, 2009, 34(12):1876-1878.
[14] NIE Youqi, HUANG Leilei, LIU Yang, et al. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations[J]. Review of Scientific Instruments, 2015, 86(6): 063105.
[15] YANG Jie, LIU Jinlu, SU Qi, et al. 5.4 Gbps real time quantum random number generator with simple implementation[J]. Optics Express, 2016, 24(24): 27475-27481.
[16] LIU Jinlu, YANG Jie, LI Zhengyu, et al. 117 Gbits/s quantum random number generation with simple structure[J]. IEEE Photonics Technology Letters, 2017, 29(3): 283-286.
[17] LIU Yang, ZHAO Qi, LI Minghan, et al. Device-independent quantum random-number generation[J]. Nature, 2018, 562: 548-551.
[18] WANG P X, LONG G, LI Y S. Scheme for a quantum random number generator[J]. Journal of Applied Physics, 2006, 100(5): 56107.
[19] EMANOELA D J L S, MENDONCA F A, RAMOS R. Quantum random number generator using only one single-photon detector[J]. IEEE Photonics Technology Letters, 2014, 26(9): 851-853.
[20] GABRIEL C, WITTMANN C, SYCH D, et al. A generator for unique quantum random numbers based on vacuum states[J]. Nature Photonics, 2010, 4(10): 711-715.
[21] SYMUL T, ASSAD S M, LAM P K. Real time demonstration of high bitrate quantum random number generation with coherent laser light[J]. Applied Physics Letters, 2011, 98: 231103.

备注/Memo

备注/Memo:
Received:2019-06-26;Accepted:2019-08-02
Foundation:National Natural Science Foundation of China (61672014); National Cryptography Development Fund of China (MMJJ20180109)
Corresponding author:Professor TAN Xiaoqing. E-mail: ttanxq@jnu.edu.cn
Citation:TAO Hong, TAN Xiaoqing, LI Xiaochun. Theoretical model of quantum random number generator based on phase fluctuation[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(5): 519-524.(in Chinese)
基金项目:国家自然科学基金资助项目(61672014);国家密码发展基金资助项目(MMJJ20180109)
作者简介:陶红(1992—),暨南大学硕士研究生.研究方向:量子信息.E-mail:1254985900@qq.com
引文:陶红,谭晓青,李晓纯.基于相位涨落的量子随机数发生器理论模型[J]. 深圳大学学报理工版,2019,36(5):519-524.
更新日期/Last Update: 2019-09-30