[1]范雪,刁东风.超薄纳米薄膜的划痕硬度评价方法及应用[J].深圳大学学报理工版,2019,36(No.5(473-598)):510-518.[doi:10.3724/SP.J.1249.2019.05510]
 FAN Xue,and DIAO Dongfeng,Nanoscratch hardness evaluation method on ultrathin nano-films and its application[J].Journal of Shenzhen University Science and Engineering,2019,36(No.5(473-598)):510-518.[doi:10.3724/SP.J.1249.2019.05510]
点击复制

超薄纳米薄膜的划痕硬度评价方法及应用()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.5(473-598)
页码:
510-518
栏目:
物理与应用物理
出版日期:
2019-09-18

文章信息/Info

Title:
Nanoscratch hardness evaluation method on ultrathin nano-films and its application
文章编号:
201905006
作者:
范雪12刁东风12
1) 深圳大学纳米表面科学与工程研究所, 广东深圳 518060
2)广东省微纳光机电工程重点实验室, 广东深圳 518060
Author(s):
FAN Xue1 2 and DIAO Dongfeng1 2
1) Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
测试计量技术及仪器纳米划痕纳米压痕硬度碳膜纳米结构
Keywords:
measurement technology and instrument nanoscratch nanoindentation hardness carbon film nanostructure
分类号:
TH117.1
DOI:
10.3724/SP.J.1249.2019.05510
文献标志码:
A
摘要:
纳米压痕是一种常用的薄膜硬度评价方法.然而,当薄膜厚度< 10 nm时,该方法难以去除基体对薄膜硬度的影响,因而无法获得薄膜自身的硬度,限制了纳米结构与硬度之间关系的认知,阻碍了超薄纳米结构薄膜的应用.本研究提出一种基于纳米压痕硬度标定下的纳米划痕硬度评价方法,并将其应用于纳米结构碳膜的硬度研究.首先,利用自行设计搭建的纳米刻划装置,通过对比碳膜在纳米划痕和纳米压痕方法下的残余变形深度,分析不受基体影响的临界薄膜厚度,得到纳米划痕深度不受基体影响的临界薄膜厚度.其次,采用压头形状等效接触模型,利用划痕的残余顶角、宽度和深度,通过计算压头前端的接触压力分布得到硅基体的纳米划痕硬度,与纳米压痕硬度标定结果一致.最后,将纳米划痕硬度方法应用在电子回旋共振等离子体溅射方法制备的3种不同纳米结构碳膜上,得到交联结构碳膜和非晶碳膜的硬度分别约为19.1 GPa和14.6 GPa,高于硅基体11.2 GPa的硬度,而石墨烯嵌入式碳膜的硬度约为2.7 GPa.分析不同纳米结构碳膜的刻划机理表明,在sp2含量较高的纳米结构碳膜中,sp3含量并不是决定碳膜力学特性的唯一因素,小尺度、多石墨烯层间交联结构能够有效增加层间的剪切强度,薄膜展现出较好的耐刻划特性.研究结果有助于进一步拓展纳米划痕方法的应用,也为不同纳米结构碳膜的应用提供了理论基础.
Abstract:
Nanoindentation is a well-known method to evaluate the hardness of nano-film. However, when the film is thinner than 10 nm, it is very hard to eliminate the substrate effect on the hardness measurement of ultrathin nano-films. As a result, the relationship between nanostructure and hardness is hard to be understood, and the applications of ultrathin nanostructured films are impeded. Therefore, in this study, the nanoscratch hardness evaluation method is proposed. The method is calibrated with the nanoindentation method, and its application on the hardness of carbon based nanostructured films is investigated. Firstly, a self-designed nanoscratch apparatus is used to perform the nanoscratch tests on carbon films with different thicknesses, the residual deformation depths caused by nanoscratch and nanoindentation are compared, and the critical film thickness without substrate effect during nanoscratch tests is obtained. Secondly, an equivalent contact model is established with the measured apex angle, scratch depth and scratch width, and then the nanoscratch hardness of silicon substrate is calculated with the contact pressure of the tip ahead the sliding direction. The result is nearly consistent with the calibrated nanoindentation hardness. Finally, the nanoscratch method is applied on the hardness evaluation of three different kinds of nanostructured carbon films prepared by electron cyclotron resonance plasma sputtering. The scratch hardness of graphene layer cross-linking and amorphous carbon films are 19.1 GPa and 14.6 GPa, respectively, which are larger than that of the silicon substrate with 11.2 GPa. While the graphene sheets embedded, carbon films have much smaller nanoscratch hardness of 2.7 GPa. The characterization mechanism of carbon films with different nanostructures shows that the content of sp3 is not the only factor determining the mechanical properties of carbon films with high sp2 content. The small-scale multi-graphene cross-linking structure can increase the interlayer shear strength, and the film exhibits better nanoscratch resistant performance. The results can further expand the application of the nanoscratch hardness evaluation method and provide research foundation for the application of carbon films with different nanostructures.

参考文献/References:

[1] 龙东平, 薛建荣, 晏智鑫. 纳米压痕和划痕法测定TiO2纳米薄膜的力学性能[J]. 表面技术, 2015, 44(6): 115-119.
LONG Dongping, XUE Jianrong, YAN Zhixin. Nanoindenation and nanoscratch measurements to determine the mechanical properties of TiO2 nano films[J]. Surface Technology, 2015, 44(6): 115-119.(in Chinese)
[2] SHAHSAVARI F, EHTESHAMZADEH M, NAIMI JAMAL R M, et al. Nanoindentation and nanoscratch behaviors of DLC films growth on different thickness of Cr nanolayers[J]. Diamond & Related Materials, 2016, 70: 76-82.
[3] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Material Research, 2004, 19(1): 3-20.
[4] SAHA R, NIX W D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation[J]. Acta Materilia, 2002, 50(1): 23-38.
[5] 张飞虎, 李琛, 孟彬彬, 等. 基于变切深纳米刻划的K9 玻璃表面成形特征及去除机制研究[J]. 机械工程学报, 2016, 52(17): 65-71.
ZHANG Feihu, LI Chen, MENG Binbin, et al. Investigation of surface deformation characteristic and removal mechanism for K9 glass based on varied cutting-depth nano-scratch[J]. Journal of Mechanical Engineering, 2016, 52(17): 65-71.(in Chinese)
[6] FAN Xue, NOSE K, DIAO Dongfeng, et al. Nanoindentation behaviors of amorphous carbon films containing nanocrystalline graphite and diamond clusters prepared by radio frequency sputtering[J]. Applied Surface Science, 2013, 273: 816-823.
[7] CHEN Cheng, XUE Peidong, FAN Xue, et al. Friction-induced rapid restructuring of graphene cap layer at sliding surfaces: short run-in period[J]. Carbon, 2018, 130: 215-221.
[8] WANG D S, CHANG S Y, CHEN T S, et al. Stress writing textured graphite conducting wires/patterns in insulating amorphous carbon matrix as interconnects[J]. Scientific Reports, 2017, 7: 9727.
[9] WANG Chao, DIAO Dongfeng. Self-magnetism induced large magnetoresistance at room temperature region in graphene nanocrystallited carbon film[J]. Carbon, 2017, 112: 162-168.
[10] YANG Lei, HU Gaijuan, DIAO Dongfeng, et al. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on psilicon substrate[J]. Applied Physics Letters, 2016, 109(3): 031910.
[11] ZHAO H, MIM K, ALURU N R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension[J]. Nano Letters, 2009, 9: 3012-3015.
[12] BERMAN D, ERDEMIR A, SUMANT A V. Few layer graphene to reduce wear and friction on sliding steel surfaces[J]. Carbon, 2013, 54: 454-459.
[13] ZHANG Y Y, WANG C M, CHENG Y F, et al. Mechanical properties of bilayer graphene sheets coupled by sp3 bonding[J]. Carbon, 2011, 49(13): 4511-4517.
[14] 刘广桥, 董丽梅, 张俊彦. 类富勒烯/非晶多层碳膜的制备及性能[J]. 中国表面工程, 2016, 29(1): 51-57.
LIU Guangqiao, DONG Limei, ZHANG Junyan. Preparation and properties of fullerene-like/amorphous multilayer carbon based film[J]. China Surface Engineering, 2016, 29(1): 51-57.(in Chinese)
[15] SHAKERZADEH M, TEO E H T, SORKIN A, et al. Plasma density induced formation of nanocrystals in physical vapor deposited carbon films[J]. Carbon, 2011, 49(5): 1733-1744.
[16] FAN Xue, DIAO Dongfeng, WANG Kai, et al. Multi-functional ECR plasma sputtering system for preparing amorphous carbon and Al-O-Si films[J]. Surface & Coatings Technology, 2011, 206(7): 1963-1970.
[17] DIAO Dongfeng, WANG Chao, FAN Xue. Frictional behavior of nanostructured carbon films[J]. Friction, 2013, 1(1): 63-71.
[18] ZHANG Wenlei, FAN Xue, DIAO Dongfeng. Three-layered sandwich structured carbon film prepared by ECR ion/electron/ion alternative irradiation technique[J]. Surface & Coatings Technology, 2015, 278: 12-17.
[19] FAN Xue, DIAO Dongfeng. Ion excitation and etching effects on top-surface properties of sp2 nanocrystallited carbon films[J]. Applied Surface Science, 2018, 462: 669-677.
[20] GUO Meiling, DIAO Dongfeng, FAN Xue, et al. Scratch behavior of re-structured carbon coating by oxygen plasma etching technology for magnetic disk application[J]. Surface & Coatings Technology, 2014, 251: 128-134.
[21] 刁东风, 范雪, 陈成. 一种ECR等离子体溅射装置及其溅射方法:ZL 201610103436.2[P]. 2016-06-08[2018-02-13].
DIAO Dongfeng, FAN Xue, CHEN Cheng. An ECR plasma sputtering apparatus and its sputtering method: ZL 201610103436.2[P]. 2016-06-08[2018-02-13].(in Chinese)
[22] KOMVOPOULOS K, SAKA N, SUH N P. The mechanism of friction in boundary lubrication[J]. Journal of Tribology, The Transactions of ASME, 1985, 107(4): 452-462.
[23] TAYABI N, CONRY T, POLYCARPOU A A. Determination of hardness from nanoscratch experiments: corrections for interfacial shear stress and elastic recovery[J]. Journal of Material Research, 2003, 18(9): 2150-2162.
[24] BHATTACHARYA A K, NIX W D. Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates[J]. International Journal of Solids Structures, 1988, 24(12): 1287-1298.

相似文献/References:

[1]王云才,魏荷娟,赵彤,等.利用网络自协商信号实现网络故障断点检测[J].深圳大学学报理工版,2013,30(No.5(441-550)):508.[doi:10.3724/SP.J.1249.2013.05508]
 Wang Yuncai,Wei Hejuan,Zhao Tong,et al.Network fault breakpoints detection based on the auto-negotiation signal[J].Journal of Shenzhen University Science and Engineering,2013,30(No.5(473-598)):508.[doi:10.3724/SP.J.1249.2013.05508]

备注/Memo

备注/Memo:
Received:2018-12-26;Accepted:2019-03-16
Foundation:National Natural Science Foundation of China (51305332); Natural Science Foundation of Guangdong Province (2018A030313908); Shenzhen Fundamental Research Project (JCYJ20170817100822005, JCYJ20160427105015701)
Corresponding author:Professor DIAO Dongfeng.E-mail: dfdiao@szu.edu.cn
Citation:FAN Xue, DIAO Dongfeng. Nanoscratch hardness evaluation method on ultrathin nano-films and its application[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(5): 510-518.(in Chinese)
基金项目:国家自然科学基金资助项目(51305332);广东省自然科学基金资助项目(2018A030313908);深圳市科技计划基础研究资助项目(JCYJ20170817100822005,JCYJ20160427105015701)
作者简介:范雪(1984—),深圳大学讲师、博士.研究方向:碳表面纳米摩擦学特性及机理.E-mail:fanx@szu.edu.cn
引文:范雪,刁东风.超薄纳米薄膜的划痕硬度评价方法及应用[J]. 深圳大学学报理工版,2019,36(5):510-518.
更新日期/Last Update: 2019-09-30