[1]李正茂,陈大庆,刘马良.无人机SAR数据低比特量化及其复杂度分析[J].深圳大学学报理工版,2019,36(5):503-509.[doi:10.3724/SP.J.1249.2019.05503]
 LI Zhengmao,CHEN Daqing,and LIU Maliang.Low-bit quantization for UAV SAR data and its complexity analysis[J].Journal of Shenzhen University Science and Engineering,2019,36(5):503-509.[doi:10.3724/SP.J.1249.2019.05503]
点击复制

无人机SAR数据低比特量化及其复杂度分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年第5期
页码:
503-509
栏目:
专题:无人机探测与通信
出版日期:
2019-09-18

文章信息/Info

Title:
Low-bit quantization for UAV SAR data and its complexity analysis
文章编号:
201905005
作者:
李正茂1陈大庆2刘马良3
1)合肥学院计算机科学与技术系,安徽合肥 230601
 2)太原卫星发射中心技术部,山西太原 030027
 3)西安电子科技大学微电子学院,陕西西安 710071
Author(s):
LI Zhengmao1 CHEN Daqing2 and LIU Maliang3
1) Department of Computer Science and Technology, Hefei University, Hefei 230601, Anhui Province, P.R.China
2) Technical Department, Taiyuan Satellite Launch Center, Taiyuan 030027, Shanxi Province, P.R.China
3) School of Microelectronics, Xidian University, Xi’an 710071, Shaanxi Province, P.R.China
关键词:
信息处理技术雷达工程无人机合成孔径雷达低比特量化单频阈值
Keywords:
information processing technique radar engineering unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) low-bit quantization single-frequency threshold
分类号:
TN958.3;TN959.3
DOI:
10.3724/SP.J.1249.2019.05503
文献标志码:
A
摘要:
无人机(unmanned aerial vehicle, UAV)平台由于尺寸与载荷的限制,仅能提供有限的硬件计算资源.如何利用尽可能低的计算复杂度来获得高质量的合成孔径雷达(synthetic aperture radar, SAR)成像,是基于UAV SAR系统设计面临的一个重要问题.分析现有算法的缺陷,利用不同的量化方法对SAR原始回波数据进行低比特量化,针对低比特量化SAR数据提出基于单频阈值的成像质量改善方法.在此基础上,研究不同量化策略下SAR成像匹配滤波处理所需的计算复杂度,并定量评估了相应的成像质量.研究结果可为基于UAV平台的SAR成像应用中计算复杂度与成像质量之间的取舍提供参考.
Abstract:
Due to the limitation of size and load, an unmanned aerial vehicle (UAV) can only provide limited hardware computing resources. How to obtain high-quality synthetic aperture radar (SAR) imaging with the lowest computational complexity is an important problem in UAV-based SAR system design. In this paper, the disadvantages of existing algorithms are analyzed. Different quantization approaches are used to quantify the raw data of SAR in low bits. An image quality improvement method based on a single frequency threshold is proposed for low-bit quantized SAR data. On this basis, the computational complexity of SAR imaging matched filtering processing under different quantization strategies is studied, and the corresponding imaging quality is quantitively evaluated. This paper provides a reference for achieving the tradeoff between computational complexity and imaging quality in SAR imaging application based on UAV platform.

参考文献/References:

[1] 王岩飞,刘畅,詹学丽, 等.无人机载合成孔径雷达系统技术与应用[J].雷达学报,2016,5(4): 333-349.
WANG Yanfei, LIU Chang, ZHAN Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333-349.(in Chinese)
[2] 陈少飞.无人机集群系统侦察监视任务规划方法[D].长沙:国防科学技术大学,2016.
CHEN Shaofei. Planning for reconnaissance and monitoring using UAV swarms[D]. Changsha: National University of Defense Technology, 2016.(in Chinese)
[3] 潘志刚,王小龙,李志勇.SAR原始数据压缩的自适应比特分配BAQ算法[J].中国科学院大学学报,2017,34(1):106-111.
PAN Zhigang, WANG Xiaolong, LI Zhiyong. An improved block adaptive quantization algorithm based on adaptive bit-allocation for SAR raw data compression[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(1): 106-111.(in Chinse)
[4] LEBEDEFF D, MATHIEU P, BARLAUD E, et al. Adaptive vector quantization for raw SAR data[C]// Processing in International Conference on Acoustics, Speech, and Signal Processing. Detroit, USA: IEEE, 1995, 4: 2511-2514.
[5] 喻言,王贞松.复数SAR图像的块自适应多级矢量量化压缩[J].高技术通讯,2014,24(4):347-354.
YU Yan, WANG Zhensong. Complex SAR image compression using block adaptive multi-stage vector quantization[J]. Chinese High Technology Letters, 2014, 24(4): 347-354.(in Chinese)
[6] FRANCESCHETTI G, TESAURO M, WALL S. SAR and one-bit coding: new ideas[C]// IEEE International Geoscience and Remote Sensing Symposium. Lincoln, USA: IEEE, 1996: 51-53.
[7] ZHAO Bo, HUANG Lei, BAO Weimin. One-bit SAR imaging based on single-frequency thresholds[J]. IEEE Transactions on Geoscience and Remote Sensing. (2019-04-30).https://ieeexplore.ieee.org/document/8703110.
[8] HU Bin, SU Weizhou. Optimal design of real-time causal differential encoding systems with Lloyd-Max quantization[C]// Proceeding of the 33rd Chinese Control Conference. Nanjing, China: IEEE, 2014: 9088-9093.
[9] RADOI A, DATCU M. Automatic change analysis in satellite images using binary descriptors and Lloyd-max quantization[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1223-1227.
[10] ABRAMOWITZ M,STEGUN I A.Handbook of mathematical functions: with formulas, graphs, and mathematical tables[M]. New York, USA: Dover Publications, 1965: 55.
[11] KUMAR K R, REDDY P M, SADANANDAM M, et al. Design of 2T XOR gate based full adder using GDI technique[C]// International Conference on Innovative Mechanisms for Industry Applications. Bengaluru, India:[s.n.], 2017: 10-13.
[12] LEE S J, RUSLAN S H. A 2×2 bit multiplier using hybrid 13T full adder with vedic mathematics method[J]. International Journal of Integrated Engineering, 2018, 10(3): 20-26.
[13] MUKHERJEE B, ROY B, BISWAS A, et al. Design of a low power 4×4 multiplier based on five transistor (5-T) half adder, eight transistor (8-T) full adder & two transistor (2-T) AND gate[C]// The 3rd International Conference on Computer, Communication, Control and Information Technology (C3IT). Trivandrum, India: IEEE, 2015: 1-5.
[14] METI S S, BHARATH C N, KUMAR Y G P, et al. Design and implementation of 8-bit vedic multiplier using mGDI technique[C]// International Conference on Advances in Computing, Communications and Informatics. Manipal, India: IEEE, 2017: 1923-1927.
[15] Sandia National Laboratories. Synthetic aperture radar (SAR) imagery[EB/OL].[2017-05-30]. http://www.sandia.gov/radar/imagery/index.html.

相似文献/References:

[1]黄建军,李鹏飞,喻建平,等.基于类云模型聚类的多目标数据关联算法[J].深圳大学学报理工版,2010,27(1):11.
 HUANG Jian-jun,LI Peng-fei,YU Jian-ping,et al.Multitarget data association algorithm using cluster cloud model based c-means clustering[J].Journal of Shenzhen University Science and Engineering,2010,27(5):11.
[2]袁天然,廖文和,程筱胜,等.牙龈软组织变形仿真技术研究[J].深圳大学学报理工版,2010,27(1):21.
 YUAN Tian-ran,LIAO Wen-he,CHENG Xiao-sheng,et al.Research on gum tissue deformation simulation techniques[J].Journal of Shenzhen University Science and Engineering,2010,27(5):21.
[3]王品,谢维信,刘宗香,等.几种面向弹道目标跟踪算法的性能评估[J].深圳大学学报理工版,2012,29(No.5(377-470)):392.[doi:10.3724/SP.J.1249.2012.05392]
 WANG Pin,XIE Wei-xin,LIU Zong-xiang,et al.Performance evaluation of several methods for tracking a ballistic object[J].Journal of Shenzhen University Science and Engineering,2012,29(5):392.[doi:10.3724/SP.J.1249.2012.05392]
[4]范恩,谢维信,刘宗香.基于子航迹Hough变换的模糊航迹关联[J].深圳大学学报理工版,2013,30(No.6(551-660)):551.[doi:10.3724/SP.J.1249.2013.06551]
 Fan En,Xie Weixin,and Liu Zongxiang.Fuzzy track association using tracklet-based Hough transform[J].Journal of Shenzhen University Science and Engineering,2013,30(5):551.[doi:10.3724/SP.J.1249.2013.06551]
[5]徐静,王彩云.压缩感知测量矩阵优化混合方法[J].深圳大学学报理工版,2014,31(1):58.[doi:10.3724/SP.J.1249.2014.01058]
 Xu Jing and Wang Caiyun.A hybrid optimization method for measurement matrix in compressed sensing[J].Journal of Shenzhen University Science and Engineering,2014,31(5):58.[doi:10.3724/SP.J.1249.2014.01058]
[6]詹从来,龙伟,丁远超,等.基于FPGA的多路数据采集与处理系统设计[J].深圳大学学报理工版,2016,33(2):127.[doi:10.3724/SP.J.1249.2016.02127]
 Zhan Conglai,Long Wei,Ding Yuanchao,et al.Design of multi channel data collection and processing system based on FPGA[J].Journal of Shenzhen University Science and Engineering,2016,33(5):127.[doi:10.3724/SP.J.1249.2016.02127]
[7]初萍,张金凤.色噪声下的延时二阶预处理MUSIC算法[J].深圳大学学报理工版,2016,33(6):571.[doi:10.3724/SP.J.1249.2016.06571]
 Chu Ping and Zhang Jinfeng.Delay second order preprocessing MUSIC algorithm in presence of colored noise[J].Journal of Shenzhen University Science and Engineering,2016,33(5):571.[doi:10.3724/SP.J.1249.2016.06571]
[8]李东,郭浩铭,田劲东,等.改进的DataMatrix码L形边精确定位方法[J].深圳大学学报理工版,2018,35(2):151.[doi:10.3724/SP.J.1249.2018.02151]
 LI Dong,GUO Haoming,TIAN Jindong,et al.An improved method of locating L-edges in DataMatrix codes[J].Journal of Shenzhen University Science and Engineering,2018,35(5):151.[doi:10.3724/SP.J.1249.2018.02151]
[9]李钢,郑鑫博,阳召成.一种基于多级自适应门限的计步算法[J].深圳大学学报理工版,2018,35(2):158.[doi:10.3724/SP.J.1249.2018.02158]
 LI Gang,ZHENG Xinbo,and YANG Zhaocheng.Pedometer method based on adaptive multilevel thresholding[J].Journal of Shenzhen University Science and Engineering,2018,35(5):158.[doi:10.3724/SP.J.1249.2018.02158]
[10]王 秋 霞.基于MCS D2P的动力锂电池管理系统主控软件[J].深圳大学学报理工版,2018,35(5):502.[doi:10.3724/SP.J.1249.2018.05502]
 WANG Qiuxia.The battery management system master control software for power lithium battery based on the MCS D2P development platform[J].Journal of Shenzhen University Science and Engineering,2018,35(5):502.[doi:10.3724/SP.J.1249.2018.05502]

备注/Memo

备注/Memo:
Received:2019-04-02;Accepted:2019-06-20
Foundation:Higher Education Quality Engineering of Anhui Province (2017mooc318)
Corresponding author:Research fellow CHEN Daqing.E-mail: dqchen64@sohu.com
Citation:LI Zhengmao, CHEN Daqing, LIU Maliang. Low-bit quantization for UAV SAR data and its complexity analysis[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(5): 503-509.(in Chinese)
基金项目:安徽省高等教育质量工程资助项目(2017mooc318)
作者简介:李正茂(1973—),合肥学院讲师.研究方向:雷达信号处理.E-mail:lzm424@163.net
陈大庆(1964—),太原卫星发射中心研究员.研究方向:雷达目标特性测量,雷达系统仿真. E-mail: dqchen64@sohu.com
引文:李正茂,陈大庆,刘马良.无人机SAR数据低比特量化及其复杂度分析[J]. 深圳大学学报理工版,2019,36(5):503-509.
更新日期/Last Update: 2019-09-30