[1]王兆平,陈炳坤.基于社交网络元数据的图像分类算法[J].深圳大学学报理工版,2019,36(No.4(347-472)):453-459.[doi:10.3724/SP.J.1249.2019.04453]
 WANG Zhaoping and CHEN Bingkun.Image classification algorithm based on social network metadata[J].Journal of Shenzhen University Science and Engineering,2019,36(No.4(347-472)):453-459.[doi:10.3724/SP.J.1249.2019.04453]
点击复制

基于社交网络元数据的图像分类算法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.4(347-472)
页码:
453-459
栏目:
【电子与信息科学】
出版日期:
2019-07-10

文章信息/Info

Title:
Image classification algorithm based on social network metadata
作者:
王兆平1陈炳坤2
1)长沙民政职业技术学院,湖南长沙410004;2)深圳大学计算机与软件学院,广东深圳518060
Author(s):
WANG Zhaoping1 and CHEN Bingkun2
1) Changsha Social Work College, Changsha 410004, Hunan Province, P.R.China 2) College of Computer Science and Software Engineering Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
人工智能社交网络网络表征学习图像分类神经网络社交多媒体
Keywords:
artificial intelligence social network network representation learning image classification neural network social multimedia
分类号:
TP181
DOI:
10.3724/SP.J.1249.2019.04453
文献标志码:
A
摘要:
在线社交网络图像通常携带大量的社交网络元数据,包含了丰富的图像语义信息,可以帮助用户区分图片中的内容.提出一种基于社交网络元数据的图像分类(multiple social metadata image classification networks,简称MSNet)算法,首先采集得到图像的多种社交网络元数据,根据图像社交网络信息构造出图像的多种关系网络,然后使用网络表征学习算法学习出图像在各个关系网络中的表征向量,最后使用图像的视觉特征和网络表征训练一个神经网络分类器对图像进行分类.通过在PASCAL、MIR、CLEF和NUS数据集上对比MSNet与CNN-Neighbor、核典型相关分析(kernel canonical correlation analysis, KCCA)算法的性能,证明了MSNet算法能提升图像分类的性能.
Abstract:
The images in online social networks usually carry a large amount of social network metadata, such as labels, users, picture groups, locations and comments. These social network metadata, which include rich image semantic information, can help users distinguish the content of imagesand communicate with each other. An image classification algorithm based on multiple social networks, MSNet, is proposed in this paper. Firstly, MSNet collects the social network metadata of images and constructs relationship networks of images based on the metadata. Then,a network embedding algorithm is used to learn the representation vectors of images in each network. Finally,a neural network classifier is trained to classify the images by using the visual features and network representation of images. The experimental results on PASCAL、MIR、CLEF and NUS image data sets show the superiority performance of MSNet in comparison with CNN-Neighbor and KCCA.

相似文献/References:

[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
 PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(No.4(347-472)):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
 LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(No.4(347-472)):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
 CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(No.4(347-472)):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
 ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(No.4(347-472)):413.
[5]李清泉,常晓猛,萧世伦,等.中国城际社交关系网络特征分析[J].深圳大学学报理工版,2013,30(No.5(441-550)):441.[doi:10.3724/SP.J.1249.2013.05441]
 Li Qingquan,Chang Xiaomeng,et al.Characteristics of micro-blog inter-city social interactions in China[J].Journal of Shenzhen University Science and Engineering,2013,30(No.4(347-472)):441.[doi:10.3724/SP.J.1249.2013.05441]
[6]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(No.1(001-110)):43.[doi:10.3724/SP.J.1249.2014.01043]
 Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(No.4(347-472)):43.[doi:10.3724/SP.J.1249.2014.01043]
[7]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(No.3(221-330)):279.[doi:10.3724/SP.J.1249.2014.03279]
 Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(No.4(347-472)):279.[doi:10.3724/SP.J.1249.2014.03279]
[8]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(No.4(331-440)):367.[doi:10.3724/SP.J.1249.2014.04367]
 Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(No.4(347-472)):367.[doi:10.3724/SP.J.1249.2014.04367]
[9]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(No.2(111-220)):196.[doi:10.3724/SP.J.1249.2015.02000]
 Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(No.4(347-472)):196.[doi:10.3724/SP.J.1249.2015.02000]
[10]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(No.3(221-330)):281.[doi:10.3724/SP.J.1249.2015.03281]
 Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(No.4(347-472)):281.[doi:10.3724/SP.J.1249.2015.03281]

更新日期/Last Update: 2019-07-04