[1]李辉,邓立波.聚异丙基丙烯酰胺的热交联及纳米纤维的制备[J].深圳大学学报理工版,2019,(No.3(221-346)):304-310.[doi:10.3724/SP.J.1249.2019.03229]
 LI Hui and DENG Libo.Thermal crosslinking and fabrication of poly(N-isopropylacrylamide)nanofibers[J].Journal of Shenzhen University Science and Engineering,2019,(No.3(221-346)):304-310.[doi:10.3724/SP.J.1249.2019.03229]
点击复制

聚异丙基丙烯酰胺的热交联及纳米纤维的制备
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
期数:
2019年No.3(221-346)
页码:
304-310
栏目:
【化学与化工】
出版日期:
2019-05-30

文章信息/Info

Title:
Thermal crosslinking and fabrication of poly(N-isopropylacrylamide)nanofibers
作者:
李辉邓立波
深圳大学化学与环境工程学院,广东深圳 518060
Author(s):
LI Hui and DENG Libo
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
高分子化学 温敏纤维 共聚合 聚异丙基丙烯酰胺-羟甲基丙烯酰胺共聚物 静电纺丝 热交联
Keywords:
polymer chemistry thermos-responsive fibers copolymerization P(NIPAm-co-NMA) electrospinning thermal crosslinking
分类号:
O 631.5
DOI:
10.3724/SP.J.1249.2019.03229
文献标志码:
A
摘要:
为制备具有良好稳定性与灵敏度的温敏纳米纤维,将异丙基丙烯酰胺(N-isopropylacrylamide, NIPAm)与羟甲基丙烯酰胺(N-methylol acrylamide, NMA)通过自由基共聚合方法合成了聚异丙基丙烯酰胺-羟甲基丙烯酰胺共聚物P(NIPAm-co-NMA) . 并利用NMA的自交联能力和热处理, 提高了共聚物P(NIPAm-co-NMA)的交联度和低临界溶解温度区间的抗溶解能力.采用静电纺丝方法将共聚物P(NIPAm-co-NMA)制备成纳米纤维,研究了纺丝工艺条件对纤维形貌与直径的影响,以及热处理温度与时间对纳米纤维交联程度与形貌保持能量的影响.结果表明,共聚物P(NIPAm-co-NMA)的最佳纺丝参数为:聚合物质量分数为10%,纺丝电压为10 kV.共聚物P(NIPAm-co-NMA)纤维的最佳热交联温度为130 ℃,热处理时间为6 h,所获得纤维的交联度为82%,热交联后纤维可在低温水溶液中保持稳定,循环加热-冷却5次后其质量仍可保持原来的98%.
Abstract:
To prepare thermo-responsive nanofibers with excellent stability and high sensitivity, the copolymer P(NIPAm-co-NMA) is synthesized by free radical copolymerization of N-isopropylacrylamide (NIPAm) and N-methylol acrylamide (NMA). Furthermore, the polymer is crosslinked via thermal treatment which results in highly cross-linked copolymer, thereby increasing the resistance to dissolution around lower critical solution temperature (LCST). In addition, the copolymer is electrospun into nanofibers. The influence of electrospinning condition on the morphology and diameter of the resulting nanofibers, and the effects of thermal treatment temperature and duration on the degree of cross-linking and morphology retaining ability are systematically investigated. The results show that the optimal spinning conditions are as follows: the polymer concentration is 10% and the spinning voltage is 10 kV. The optimal thermal cross-linking temperature is 130 ℃ and the treatment duration is 6 h. The degree of cross-linking of the as-obtained fibers is 82%. The fibers after thermal cross-linking could maintain the stability in water at a low temperature. After 5 cycles of heating-cooling, the fibers could retain 98% of the initial weights.

相似文献/References:

[1]倪卓,邢锋,黄战,等.玄武岩纤维-水泥自修复复合材料断裂能的研究[J].深圳大学学报理工版,2014,31(No.4(331-440)):379.[doi:10.3724/SP.J.1249.2014.04379]
 Ni Zhuo,Xing Feng,Huang Zhan,et al.Study on fracture energy of basalt fiber-cement self-healing composites[J].Journal of Shenzhen University Science and Engineering,2014,31(No.3(221-346)):379.[doi:10.3724/SP.J.1249.2014.04379]
[2]何传新,任圣颖,谢敏随,等.基于Fe3O4-PEI纳米粒子构建葡萄糖传感器的研究[J].深圳大学学报理工版,2015,32(No.1(001-110)):76.[doi:10.3724/SP.J.1249.2015.01076]
 He Chuanxin,Ren Shengying,Xie Minsui,et al.Glucose sensor based on Fe3O4-PEI nanoparticles[J].Journal of Shenzhen University Science and Engineering,2015,32(No.3(221-346)):76.[doi:10.3724/SP.J.1249.2015.01076]

更新日期/Last Update: 2019-04-22