[1]韩素婷,付晶晶,周晔.基于功能材料的非易失性存储器[J].深圳大学学报理工版,2019,36(No.3(221-346)):221-229.[doi:10.3724/SP.J.1249.2019.03221]
 HAN Suting,FU Jingjing,and ZHOU Ye.Nonvolatile memory based on functional materials[J].Journal of Shenzhen University Science and Engineering,2019,36(No.3(221-346)):221-229.[doi:10.3724/SP.J.1249.2019.03221]
点击复制

基于功能材料的非易失性存储器()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.3(221-346)
页码:
221-229
栏目:
【电子与信息科学】
出版日期:
2019-05-20

文章信息/Info

Title:
Nonvolatile memory based on functional materials
文章编号:
201903001
作者:
韩素婷1付晶晶2周晔2
1) 深圳大学微纳光电子学研究院,广东深圳 518060;2)深圳大学高等研究院, 广东深圳 518060
Author(s):
HAN Suting1 FU Jingjing2 and ZHOU Ye2
1) Institute of Micro-nano Optoelectronics, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
微电子学与固体电子学 非易失存储器 有机存储器 先进功能材料 金属纳米粒子 光存储
Keywords:
microelectronics and solid electronics nonvolatile memory organic memory advanced functional material metal nanoparticles optical storage
分类号:
O484.3
DOI:
10.3724/SP.J.1249.2019.03221
文献标志码:
A
摘要:
随着信息大爆炸时代的到来,要求存储器在单位体积中能够存储更多的信息,然而在缩减器件尺寸上会遇到摩尔定律失效的瓶颈.为克服这个技术上的限制,使用一些功能性材料用于存储器成为研究热点.介绍3大类功能材料的非易失性存储器,指出多金属氧酸盐基存储器,具有很强的电子接收能力和实现分子级存储的潜力;金属纳米粒子存储器,因离散的金纳米粒子功能层有提升器件性能和利于实现存储性能实时可控,所以在当今先进存储器研究领域受到广泛关注;生物材料基存储器,因特定的生物材料能发生可逆电阻开关现象,且原料具有可持续获得性和自降解性等优点,也成为存储器研究领域的明星.文章客观讨论了这3类材料用于存储器上的不足.
Abstract:
With the advent of the era of information explosion, memory is required to store more information in unit volume. However, people encounter the bottleneck of Moore’s Law failure in reducing device size. In order to overcome the theoretical limitation, the use of some functional materials for memory has become a research hotspot. This paper outlines the non-volatile memory based on three types of functional materials: Polyoxometalates (POMs)-based memory, in which POMs have strong electronic reception capability and potential for molecular-level storage; Metal nanoparticles-based memory which has attracted much attention in the field of advanced memory as well, due to its advantages of improving device performance and realizing real-time controllable storage; Biomaterial-based memory, which is another rising-star material used in the field of memory research because special biomaterials have reversible resistance switching, together with a series of other advantages such as sustainable availability of raw materials, self-degradation and so on. This review also discusses the shortcomings of these three types of materials used in memory devices.

参考文献/References:

[1] HWANG C S. Prospective of semiconductor memory devices: from memory system to materials[J]. Advanced Electronic Materials, 2015, 1(6): 1400056.
[2] YODH G B, PAL Y, TREFIL J S. Comment on the evidence for rapidly rising p-p total cross section from cosmic-ray data[J]. Physical Review D, 1973, 8(9): 3233-3236.
[3] BEKENSTEIN J D. Black holes and entropy[J]. Physical Review D, 1973, 7(8): 2333-2346.
[4] LI Ming. Review of advanced CMOS technology for post-Moore era[J]. Science China (Physics, Mechanics & Astronomy), 2012, 55(12): 2316-2325.
[5] HAN Suting, PENG Haiyan, SUN Qijun, et al. An overview of the development of flexible sensors[J]. Advanced Materials, 2017, 29(33): 1700375.
[6] SHIM J, PARK H Y, KANG D H, et al. Electronic and optoelectronic devices based on two-dimensional materials: from fabrication to application[J]. Advanced Electronic Materials, 2017, 3(4): 1600364.
[7] ZHOU Ye, HAN Suting, CHEN Xian, et al. An upconverted photonic nonvolatile memory[J]. Nature Communications, 2014, 5: 4720.
[8] HAN Suting, ZHOU Ye, ZHOU Li, et al. CdSe/ZnS core-shell quantum dots charge trapping layer for flexible photonic memory[J]. Journal of Materials Chemistry C, 2015, 3(13): 3173-3180.
[9] DUBNAU J, CHIANG A S, TULLY T. Neural substrates of memory: from synapse to system[J]. Neurobiol, 2003, 54(1): 238-253.
[10] OHNO T, HASEGAWA T, TSURUOKA T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses[J]. Nature Materials, 2011, 10(8): 591-595.
[11] PEREDA A E. Electrical synapses and their functional interactions with chemical synapses[J]. Nature Reviews Neuroscience, 2014, 15(4): 250-263.
[12] TNNESEN J, KATONA G, RZSA B, et al. Spine neck plasticity regulates compartmentalization of synapses[J]. Nature Neuroscience, 2014, 17: 678.
[13] IRIMIA-VLADU M, TROSHIN P A, REISINGER M A, et al. Biocompatible and biodegradable materials for organic field-effect transistors[J]. Advanced Functional Materials, 2010, 20(23): 4069-4076.
[14] IRIMIA-VLADU M, SARICIFTCI N S, BAUER S. Exotic materials for bio-organic electronics[J]. Journal of Materials Chemistry, 2011, 21(5): 1350-1361.
[15] HWANG S W, PARK G, CHENG Huanyu, et al. Materials for high-performance biodegradable semiconductor devices[J]. Advanced Materials, 2014, 26(13): 1992-2000.
[16] LEE S W, LEE H J, CHOI J H, et al. Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers[J]. Nano Letters, 2010, 10(1): 347-351.
[17] WANG Chengyuan, WANG Jiangxin, LI Peizhou, et al. Synthesis, characterization, and non-volatile memory device application of an n-substituted heteroacene[J]. Chemistry, 2014, 9(3): 779-783.
[18] CRAWFORD A O, CAVALLI G, HOWLIN B J. Investigation of structure property relationships in liquid processible, solvent free, thermally stable bismaleimide-triazine (BT) resins[J]. Reactive & Functional Polymers, 2016, 102: 110-118.
[19] LIU Jilei, CHEN Zhen, CHEN Shi, et al. Electron/ion sponge-like V-based polyoxometalate: toward high-performance cathode for rechargeable sodium ion batteries[J]. ACS Nano, 2017, 11(7): 6911-6920.
[20] ABDULAZIZ M, SHANMUGAM S. Sulfonated poly (arylene ether ketone)/polyoxometalate-graphene oxide composite: a highly ion selective membrane for all vanadium redox flow batteries[J]. Chemical Communications, 2017, 53(5): 917-920.
[21] GLEZOS N, ARGITIS P, VELESSIOTIS D, et al. Tunneling transport in polyoxometalate based composite materials[J]. Applied Physics Letters, 2003, 83(3): 488-490.
[22] GLEZOS N, DOUVAS A M, ARGITIS P, et al. Electrical characterization of molecular monolayers containing tungsten polyoxometalates[J]. Microelectronic Engineering, 2006, 83(4/5/6/7/8/9): 1757-1760.
[23] DOUVAS A M, MAKARONA E, GLEZOS N, et al. Polyoxometalate-based layered structures for charge transport control in molecular devices[J]. ACS Nano, 2008, 2(4): 733-742.
[24] MAKARONA E, KAPETANAKIS E, VELESSIOTIS D M, et al. Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates[J]. Microelectronic Engineering, 2008, 85(5): 1399-1402.
[25] LI Xianbin, CHEN Nianke, WANG Xuepeng, et al. Phase-change superlattice materials toward low power consumption and high density data storage: microscopic picture, working principles, and optimization[J]. Advanced Functional Materials, 2018, 28(24): 1803380.
[26] BALLIOU A, PAPADIMITROPOULOS G, SKOULATAKIS G, et al. Low-dimensional polyoxometalate molecules/tantalum oxide hybrids for non-volatile capacitive memories[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7212-7220.
[27] LI Mengting, CONG Lina, ZHAO Jiao, et al. Self-organization towards complex multi-fold meso-helices in the structures of Wells-Dawson polyoxometalate-based hybrid materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2017, 5(7): 3371-3376.
[28] MARTIN-SABI M, WINTER R, LYDON C, et al. Rearrangement of {α-P2W15} to {PW6} moieties during the assembly of transition-metal-linked polyoxometalate clusters[J]. Chemical Communications, 2016, 52(5): 919-921.
[29] LEHMANN J, GAITA-ARINO A, CORONADO E A. Spin qubits with electrically gated polyoxometalate molecules[J]. Nature Nanotechnology, 2007, 2(5): 312-317.
[30] BONFIGLIO V, IANNACCONE G. Sensitivity-based investigation of threshold voltage variability in 32-nm flash memory cells and MOSFETs[J]. Solid-State Electronics, 2013, 84: 127-131.
[31] WANG Peng, WANG Xiangping, ZHU Guoyi, et al. Renewable-surface amperometric nitrite sensor based on sol-gel-derived silicomolybdate-methylsilicate-graphite composite material[J]. The Analyst, 2000, 125(7): 1291-1294.
[32] HAN Suting, ZHOU Ye, WANG Chundong, et al. Layer-by-layer-assembled reduced graphene oxide/gold nanoparticle hybrid double-floating-gate structure for low-voltage flexible flash memory[J]. Advanced Materials, 2013, 25(6): 793-872.
[33] TALAPIN D V, LEE J S, KOVALENKO M V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications[J]. Chemical Reviews, 2010, 110(1): 389-458.
[34] LEE M J, LEE C B, LEE D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures[J]. Nature Materials, 2011, 10(8): 625-630.
[35] KANG M, BAEG K, KHIM D, et al. Printed, flexible, organic nano-floating-gate memory: effects of metal nanoparticles and blocking dielectrics on memory characteristics[J]. Advanced Functional Materials, 2013, 23(28): 3503-3512.
[36] DI Chongan, YU Gui, LIU Yunqi, et al. High-performance organic field-effect transistors with low-cost copper electrodes[J]. Advanced Materials, 2008, 20(7): 1286-1290.
[37] ZHOU Ye, HAN Suting, XU Zongxiang, et al. Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate)[J]. Nanotechnology, 2012, 23(34): 344014.
[38] CHANG H C, LIU Chengliang, CHEN Wenchang. Flexible nonvolatile transistor memory devices based on one-dimensional electrospun P3HT: Au hybrid nanofibers[J]. Advanced Functional Materials, 2013, 23(39): 4960-4968.
[39] KALTENBRUNNER M, STADLER P, SCHWDIAUER R, et al. Anodized aluminum oxide thin films for room-temperature-processed, flexible, low-voltage organic non-volatile memory elements with excellent charge retention[J]. Advanced Materials, 2011, 23: 4892-4896.
[40] KIM D H, LU N, MA R, et al. Epidermal electronics[J]. Science, 2011, 333(6044): 838-843.
[41] CHORTOS A, LIU Jia, BAO Zhenan. Pursuing prosthetic electronic skin[J]. Nature Materials, 2016, 15(9): 937-950.
[42] SON D, LEE J, QIAO Shutao, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders[J]. Nature Nanotechnology, 2014, 9(5): 397-404.
[43] GARG A, ONUCHIC J N, AMBEGAOKAR V. Effect of friction on electron transfer in biomolecules[J]. The Journal of Chemical Physics, 1985, 83(9): 4491-4503.
[44] VALENTINI L, CARDINALI M, FORTUNATI E, et al. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films[J]. Applied Physics Letters, 2014, 105(15): 153111.
[45] QIAN Kai, NGUYEN V C, CHEN Tupei, et al. Novel concepts in functional resistive switching memories[J]. Journal of Materials Chemistry C, 2016, 4: 9637-9645.
[46] HUNG C C, CHIU Y C, WU H C, et al. Conception of stretchable resistive memory devices based on nanostructure-controlled carboh drate-block-polyisoprene block copolymers[J]. Advanced Functional Materials, 2017, 27(13): 1606161.
[47] LEE J H, YEW S C, CHO J, et al. Effect of redox proteins on the behavior of non-volatile memory[J]. Chemical Communications, 2012, 48: 12008-12010.
[48] ZHANG Chaochao, SHANG Jie, XUE Wuhong, et al. Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor[J]. Chemical Communications, 2016, 52(26): 4828-4831.
[49] VOLPATI D, MACHADO A D, OLIVATI C A, et al. Physical vapor deposited thin films of lignins extracted from sugar cane bagasse: morphology, electrical properties, and sensing applications[J]. Biomacromolecules, 2011, 12(9): 3223-3231.
[50] GELLERSTEDT G. Softwood kraft lignin: raw material for the future[J].Industrial Crops and Products, 2015, 77: 845-854.
[51] BAEK H, LEE C, LIM K I, et al. Resistive switching memory properties of layer-by-layer assembled enzyme multilayers[J]. Nanotechnology, 2012, 23(15): 155604.
[52] BAEK H, LEE C, PARK J, et al. Layer-by-layer assembled enzyme multilayers with adjustable memory performance and low power consumption via molecular-level control[J]. Journal of Materials Chemistry, 2012, 22(11): 4645-4651.
[53] SHIH C C, CHUNG C Y, LAM J Y, et al. Transparent deoxyribonucleic acid substrate with high mechanical strength for flexible and biocompatible organic resistive memory devices[J]. Chemical Communications, 2016, 52(92): 13463-13466.
[54] KIM B J, KO Y, CHO J H, et al. Organic field-effect transistor memory devices using discrete ferritin nanoparticle-based gate dielectrics[J]. Small, 2013, 9(22): 3784-3791.
[55] MEDALSY I, KLEIN M, HEYMAN A, et al. Logic implementations using a single nanoparticle-protein hybrid[J]. Nature Nanotechnology, 2010, 5(6): 451-457.
[56] KO K, KIM Y, BAEK K, et al. Electrically bistable properties of layer-by-layer assembled multilayers based on protein nanoparticles[J]. ACS Nano, 2011, 5(12): 9918-9926.
[57] ZHU Bowen, WANG Hong, LEOW W R, et al. Silk fibroin for flexible electronic devices[J]. Advanced Materials, 2016, 28(22): 4250-4265.
[58] HOTA M K, BERA M K, KUNDU B, et al. A natural silk fibroin protein-based transparent bio-memristor[J]. Advanced Functional Materials, 2012, 22(21): 4493-4499.
[59] WANG Hong, DU Yuanmin, LI Yingtao, et al. Configurable resistive switching between memory and threshold characteristics for protein-based devices[J]. Advanced Functional Materials, 2015, 25(25): 3825-3831.
[60] WANG Hong, ZHU Bowen, MA Xiaohua, et al. Physically transient resistive switching memory based on silk protein[J]. Small, 2016, 12(20): 2715-2719.
[61] L Ziyu,WANG Yan,CHEN Zhonghui,et al.Phototunable biomemory based on light-mediated charge trap[J]. Advanced Science, 2018, 5(9): 1870051.
[62] XU Xuezhu, ZHOU Jian, NAGARAJU D H, et al. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices[J]. Advanced Functional Materials, 2015, 25(21): 3193-3202.
[63] PARK Y, LEE J S. Flexible multistate data storage devices fabricated using natural lignin at room temperature[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6207-6212.
[64] PARK Y, LEE J S. Artificial synapses with short-and long-term memory for spiking neural networks based on renewable materials[J]. ACS Nano, 2017, 11(9): 8962-8969.
[65] LING Qidan, LIAW D J, ZHU Chunxiang, et al. Polymer electronic memories: materials, devices and mechanisms[J]. Progress in Polymer Science, 2008, 33(10): 917-978.
[66] CHO B, SONG S, JI Y, et al. Organic resistive memory devices: performance enhancement, integration, and advanced architectures[J]. Advanced Functional Materials, 2011, 21(15): 2806-2829.
[67] HAFSI B, BOUBAKER A, GUERIN D, et al. Electron-transport polymeric gold nanoparticles memory device, artificial synapse for neuromorphic applications[J]. Organic Electronics, 2017, 50: 499-506.
[68] WU Guodong, ZHANG Jin, WAN Xiang, et al. Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrate[J]. Materials Chemistry, 2014, 2(31): 6249-6255.

备注/Memo

备注/Memo:
Received:2018-10-18;Accepted:2018-11-18
Foundation:National Natural Science Foundation of China (61604097)
Corresponding author:Professor ZHOU Ye. E-mail: yezhou@szu.edu.cn; Associate professor HAN Suting. E-mail: sutinghan@szu.edu.cn
Citation:HAN Suting, FU Jingjing, ZHOU Ye. Nonvolatile memory based on functional materials[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3): 221-229.(in Chinese)
基金项目:国家自然科学基金资助项目 (61604097)
作者简介:韩素婷(1986—),深圳大学副教授、博士. 研究方向:存储器. E-mail:sutinghan@szu.edu.cn
付晶晶(1993—),深圳大学硕士研究生.研究方向:材料科学与工程.E-mail:1768365990@qq.com
韩素婷、付晶晶为共同第一作者.
引文:韩素婷,付晶晶,周晔.基于功能材料的非易失性存储器[J]. 深圳大学学报理工版,2019,36(3):221-229.
更新日期/Last Update: 2019-04-22