[1]唐亚华,沈仕远,汪璐,等.基于VO2薄膜的太赫兹可调超表面结构[J].深圳大学学报理工版,2019,(No.2(111-220)):182-188.[doi:10.3724/SP.J.1249.2019.02182]
 TANG Yahua,SHEN Shiyuan,WANG Lu,et al.Terahertz adjustable metasurface structure based on vanadium dioxide thin film[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):182-188.[doi:10.3724/SP.J.1249.2019.02182]
点击复制

基于VO2薄膜的太赫兹可调超表面结构()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
期数:
2019年No.2(111-220)
页码:
182-188
栏目:
【专辑:太赫兹技术】
出版日期:
2019-03-20

文章信息/Info

Title:
Terahertz adjustable metasurface structure based on vanadium dioxide thin film
文章编号:
201902011
作者:
唐亚华沈仕远汪璐张豪朱韵樵文岐业张怀武
电子科技大学电子科学与工程学院,四川成都611731
Author(s):
TANG Yahua SHEN Shiyuan WANG Lu ZHANG Hao ZHU Yunqiao WEN Qiye and ZHANG Huaiwu
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, P.R.China
关键词:
电磁场与电磁波太赫兹可调超表面幅度调制相变材料二氧化钒硅基片
Keywords:
electromagnetic field and electromagnetic waves terahertz tunable metasurface amplitude modulation phase-change material vanadium dioxide silicon substrate
分类号:
TN761
DOI:
10.3724/SP.J.1249.2019.02182
文献标志码:
A
摘要:
利用二氧化钒薄膜的绝缘-金属相变特性,在硅基片上设计并制备了一种电压控制的超表面调制器件,研究在太赫兹频率范围内超表面器件的透射特性和电控可调谐特性.实验结果表明,当太赫兹波垂直入射可调超表面器件表面时,器件的透射谱线在0.31 THz处达到最高峰值;而当电压从0 V加至8 V时,器件的透射率明显降低,在0.41 THz处峰值最低;在0.2~0.6 THz整个波段内,调制深度最大可以达到59%;而通过对器件施加电压,可以实现在两种不同谐振状态之间的可控,并产生对太赫兹透射率的调制.该实验结果对太赫兹可调超表面的研究发展具有重要意义.
Abstract:
Based on the insulation-metal phase transition characteristics of vanadium dioxide thin films, an metasurface-based electronically controlled terahertz modulation device is designed and fabricated on a high-resistance silicon substrate. The transmission and electronically controlled tunable characteristics of the metasurface in the terahertz frequency range are studied. The experimental results show that when the terahertz wave is perpendicular to the surface of the tunable metasurface device, the transmission line of the device reaches the highest peak at 0.31 THz. And when the voltage increases from 0 V to 8 V, the transmission rate of the device significantly decreases, and the lowest peak value is at 0.41 THz. The modulation depth can be up to 59% in the entire band of 0.2-0.6 THz. By controlling the applied voltage, the device can switch freely between two resonant states with a large difference in transmittance. The experimental results are of great significance for the research and development of terahertz tunable metasurface.

参考文献/References:

[1] HE Jingwen, WANG Sen, ZHANG Yan. Terahertz beam shaping with metasurface[C]// International Conference on Infrared, Millimeter-wave, and Terahertz Technology. Beijing: SPIE, 2016: 1003019.
[2] SHIN J H, MOON K, LEE E S, et al. Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer[J]. Nanotechnology, 2015, 26(31): 315203.
[3] YAHIAOUI R, OUSLIMANI H H. Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber[J]. Journal of Applied Physics, 2017, 122(9): 093104.
[4] ZHAO Jingcheng, CHENG Yongzhi, CHENG Zhengze. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves[J]. IEEE Photonics Journal, 2018, 10(1): 1-10.
[5] ORAZBAYEV B, ESTAKHRI N M, BERUETE M, et al. Terahertz carpet cloak based on a ring resonator metasurface[J]. Physical Review B, 2015, 91(19): 195444.
[6] HASHEMI M, MOAZAMI A, NASERPOUR M, et al. A broadband multifocal metalens in the terahertz frequency range[J]. Optics Communications, 2016, 370: 306-310.
[7] CHEN Long, QU Shiwei, CHEN Baojie, et al. Terahertz metasurfaces for absorber or reflectarray applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 234-241.
[8] HAO L Y, ZHOU X J, YANG Z B, et al. A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide[J]. Applied Physics Letters, 2016, 109(23): 233503.
[9] 熊瑛,文岐业,田伟,等.硅基二氧化钒相变薄膜电学特性研究[J].物理学报,2015, 64(1):017101.
XIONG Ying, WEN Qiye, TIAN Wei, et al. Researches on the electrical properties of vanadium oxide thin films on Si substrates[J]. Acta Physica Sinica, 2015, 64(1): 017101.(in Chinese)
[10] ZHOU Gaochao, DAI Penghui, WU Jingbo, et al. Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface[J]. Optics Express, 2017, 25(15): 17322-17328.
[11] XU Hexiu, SUN Shulin, TANG Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J].Scientific Reports, 2016, 6: 27503.
[12] KIM H, CHARIPAR N, BRECKENFELD E, et al. Active terahertz metamaterials based on the phase transition of VO2 thin films[J]. Thin Solid Films, 2015, 596: 45-50.
[13] 刘志强,常胜江,王晓雷,等.基于VO2薄膜相变原理的温控太赫兹超材料调制器[J].物理学报,2013, 62(13):158-163.
LIU Zhiqiang, CHANG Shengjiang, WANG Xiaolei, et al. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film[J]. Acta Physica Sinica, 2013, 62(13): 158-163.(in Chinese)
[14] CUI Tiejun, SMITH D, LIU Ruopeng. Metamaterials: theory, design, and applications[M]. New York: Springer, 2009: 1-367.
[15] NASHIMA S, MORIKAWA O, TAKATA K, et al. Measurement of optical properties of highly doped Silicon by terahertz time domain reflection spectroscopy[J]. Applied Physics Letters, 2001, 79(24): 3923-3925.

相似文献/References:

[1]张敏,权润爱,苏红,等.光泵连续太赫兹波在生物成像中的应用研究(英文)[J].深圳大学学报理工版,2014,31(No.2(111-220)):160.[doi:10.3724/SP.J.1249.2014.02160]
 Zhang Min,Quan Runai,Su Hong,et al.Investigation of optically pumped continuous terahertz laser in biological imaging[J].Journal of Shenzhen University Science and Engineering,2014,31(No.2(111-220)):160.[doi:10.3724/SP.J.1249.2014.02160]
[2]舒国响,曹利红,熊浩,等.0.24 THz带状注行波放大管交错栅慢波结构研究[J].深圳大学学报理工版,2019,(No.2(111-220)):128.[doi:10.3724/SP.J.1249.2019.02128]
 SHU Guoxiang,CAO Lihong,XIONG Hao,et al.A staggered double vane slow wave structure of 0.24 THz sheet beam travelling wave tube[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):128.[doi:10.3724/SP.J.1249.2019.02128]
[3]赵超,刘文鑫,王勇,等.0.5 THz返波管电子光学系统设计[J].深圳大学学报理工版,2019,(No.2(111-220)):135.[doi:10.3724/SP.J.1249.2019.02135]
 ZHAO Chao,LIU Wenxin,et al.Design of electron optics system for 0.5 THz backward wave oscillator[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):135.[doi:10.3724/SP.J.1249.2019.02135]
[4]夏良平,崔洪亮.基于金属开口环阵列的太赫兹各向异性超材料[J].深圳大学学报理工版,2019,(No.2(111-220)):152.[doi:10.3724/SP.J.1249.2019.02152]
 XIA Liangping and CUI Hongliang.Terahertz anisotropic metamaterials based on metal slit ring array[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):152.[doi:10.3724/SP.J.1249.2019.02152]
[5]符张龙,邵棣祥,张真真,等.太赫兹频率上转换成像器件研究[J].深圳大学学报理工版,2019,(No.2(111-220)):147.[doi:10.3724/SP.J.1249.2019.02147]
 FU Zhanglong,SHAO Dixiang,ZHANG Zhenzhen,et al.Terahertz frequency up-conversion imaging devices[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):147.[doi:10.3724/SP.J.1249.2019.02147]
[6]宋瑞良,刘一波.一种超高速太赫兹测试信号产生器的设计[J].深圳大学学报理工版,2019,(No.2(111-220)):176.[doi:10.3724/SP.J.1249.2019.02176]
 SONG Ruiliang and LIU Yibo.A signal generator for ultra-high speed terahertz testing[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):176.[doi:10.3724/SP.J.1249.2019.02176]

备注/Memo

备注/Memo:
Received:2018-12-11;Accepted:2018-12-22
Foundation:National Natural Science Foundation of China (61831012,51572042);Science Challenge Project (TZ2018003)
Corresponding author:Professor WEN Qiye.E-mail: qywen@uestc.edu.cn
Citation:TANG Yahua,SHEN Shiyuan,WANG Lu, et al. Terahertz adjustable metasurface structure based on vanadium dioxide thin film [J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 182-188.(in Chinese)
基金项目:国家自然科学基金资助项目(61831012,51572042);科学挑战计划资助项目(TZ2018003)
作者简介:唐亚华(1995—),女,电子科技大学硕士研究生.研究方向:太赫兹科学与技术.E-mail:599294104@qq.com
文岐业(1976—),男,电子科技大学教授、博士生导师,入选四川省杰出青年学术技术带头人资助计划,教育部新世纪优秀人才支持计划. 研究方向:太赫兹功能器件与太赫兹高速调制技术、太赫兹通信及太赫兹成像等应用研究. E-mail:qywen@uestc.edu.cn
引文:唐亚华,沈仕远,汪璐,等. 基于VO2薄膜的太赫兹可调超表面结构[J]. 深圳大学学报理工版,2019,36(2):182-188.
更新日期/Last Update: 2019-03-07