[1]李琦,刘飞,肖功利,等.简易对称三孔缝Babinet超表面中的Fano共振[J].深圳大学学报理工版,2019,(No.2(111-220)):157-161.[doi:10.3724/SP.J.1249.2019.02157]
 LI Qi,LIU Fei,XIAO Gongli,et al.Fano resonance in facile symmetric trimeric Babinet metasurface[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):157-161.[doi:10.3724/SP.J.1249.2019.02157]
点击复制

简易对称三孔缝Babinet超表面中的Fano共振()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
期数:
2019年No.2(111-220)
页码:
157-161
栏目:
【专辑:太赫兹技术】
出版日期:
2019-03-20

文章信息/Info

Title:
Fano resonance in facile symmetric trimeric Babinet metasurface
文章编号:
201902007
作者:
李琦刘飞肖功利张法碧傅涛
桂林电子科技大学广西精密导航与应用技术重点实验室,广西桂林 541004
Author(s):
LI Qi LIU Fei XIAO Gongli ZHANG Fabi and FU Tao
Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, Guangxi Zhuang Autonomous Region, P.R.China
关键词:
太赫兹器件Babinet超表面Fano共振可调谐特征明模式暗模式
Keywords:
terahertz device Babinet metasurfaces Fano resonance tunable characteristic bright mode dark mode
分类号:
TN29
DOI:
10.3724/SP.J.1249.2019.02157
文献标志码:
A
摘要:
研究一种结构简单对称三孔缝Babinet超表面在太赫兹频段的Fano共振现象. 发现当沿垂直狭缝方向极化的线极化波垂直入射于超表面时,会引起入射波激发的同相明模式与反相暗模式进行干涉,从而产生Fano共振. 通过调节超表面的结构参数,可以实现同相明模式的单独调谐及反相暗模式的线性变化,也实现了品质因数的调谐,揭示了一种实现Fano共振明暗模式调谐的方法.研究显示,调谐Fano共振的机理在传感器、滤波器、光开关、光电探测器及能量收集器等领域,因其先进的性能而极具应用前景.
Abstract:
A facile symmetric trimeric Babinet metasurface is proposed for producing a Fano resonance in terahertz region. The Fano resonance is excited by an incident wave that interferes with the out-of-phase dark mode when a linearly polarized wave perpendicular to the Babinet slits illuminates the metasurface. By adjusting the structural parameters of the metasurface, the in-phase bright mode can be tuned independently, while the out-of-phase dark mode can be changed linearly, and the quality factor can also be tuned. Overall, a method for tuning the dark and bright modes for Fano resonance is revealed. The tuning mechanism has promise for applications in various fields such as sensors, filters, optical switches, photodetectors, and energy-harvesting devices with advanced performance.

参考文献/References:

[1] GLYBOVSKI S B, TRETYAKOV S A, BELOV P A, et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 2016, 634(24): 1-72.
[2] ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924.
[3] MONTICONE F, ALU A. Metamaterial, plasmonic and nanophotonic devices[J]. Reports on Progress in Physics, 2017, 80(3): 036401.
[4] CHEN Houtong, TAYLOR A J, YU Nanfang. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics Physical Society, 2016, 79(7): 076401.
[5] DENG Zilan, ZHANG Shuang, WANG Guoping. A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces[J]. Nanoscale, 2016, 8(3): 1588-1594.
[6] DENG Zilan, ZHANG Shuang, WANG Guoping. Wide-angled off-axis achromatic metasurfaces for visible light[J]. Optics Express, 2016, 24(20): 23118-23128.
[7] PENDRY J B. Negative refraction makes a perfect lens[J]. Physial Review Letters, 2000, 85(18): 3966-3969.
[8] PANOIU N C, OSGOOD R M. Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies[J]. Optics Communications, 2003, 223(4/5/6): 331-337.
[9] PU Mingbo, CHEN Po, WANG Chuangtao, et al. Broadband anomalous reflection based on gradient low-Q meta-surface[J]. AIP Advances, 2013, 3(5): 052136.
[10] SUN Shulin, YANG Kuangyu, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229.
[11] DENG Zilan, LI Xiangping, WANG Guoping. A multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure[DB/OL]. (2017-05-27)[2018-12-01]. https://arxiv.org/abs/1705.10171
[12] SMITH D R, MOCK J J, STARR A F, et al. Gradient index metamaterials[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(3 Pt 2B): 036609.
[13] HOANG T V, LEE J H. Generation of multi-beam reflected from gradient-index metasurfaces[J]. Results in Physics, 2018, 10: 424-426.
[14] LUK’YANCHUK B, ZHELUDEV N I, MAIER S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707-715.
[15] DENG Zilan, YOGESH N, CHEN Xiaodong, et al. Full controlling of Fano resonances in metal-slit superlattice[J]. Scientific Reports, 2015, 5:18461.
[16] DENG Zilan, LI Guixin. Metasurface optical holography[J]. Materials Today Physics, 2017, 3:16-32.
[17] DENG Zilan, DENG Junhong, ZHUANG Xin, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5): 2885-2892.
[18] DENG Zilan, DENG Junhong, ZHUANG Xin, et al. Facile metagrating holograms with broadband and extreme angle tolerance[J]. Light: Science & Applications, 2018, 7(1): 78.
[19] LIU Zhonghui, YE Jian. Highly controllable double Fano resonances in plasmonic metasurfaces[J]. Nanoscale, 2016, 8(40): 17665-17674.
[20] WU C, KHANIKAEV A B, SHVETS G. Broadband slow light metamaterial based on a double-continuum Fano resonance[J]. Physical Review Letters, 2011, 106(10): 107403.
[21] PAPASIMAKIS N, ZHELUDEV N I. Metamaterial-induced transparency: sharp Fano resonances and slow light[J]. Optics and Photonics News, 2009, 20(10): 22-27.
[22] ZHAN Yaohui, LEI Dangyuan, LI Xiaofei, et al. Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing[J]. Nanoscale, 2014, 6(9): 4705-4715.
[23] TU Zhengrui, GAO Dingshan, ZHANG Meiling, et al. High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator[J]. Optics Express, 2017, 25(17): 20911-20922.
[24] ZHELUDEV N I, PROSVIRNIN S L, PAPASIMAKIS N, et al. Lasing spaser[J]. Nature Photonics, 2008, 2(6): 351-354.
[25] DENG Zilan, DONG Jianwen. Lasing in plasmon-induced transparency nanocavity[J]. Optics Express, 2013, 21(17): 20291-20302.
[26] WANG Feng, WANG Zhengping, SHI Jinhui. Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface[J]. Journal of Applied Physics, 2014, 116(15): 153506.
[27] CONG Longqing, MANJAPPA M, XU Ningning, et al. Fano resonances in terahertz metasurfaces: a figure of merit optimization[J]. Advanced Optical Materials, 2015, 3(11): 1537-1543.
[28] BOZHEVOLNYI S I, EVLYUKHIN A B, PORS A, et al. Optical transparency by detuned electrical dipoles[J]. New Journal of Physics, 2011, 13(2): 023034.
[29] YAN Jiahao, LIU Pu, LIN Zhaoyong, et al. Directional Fano resonance in a silicon nanosphere dimer[J]. ACS Nano, 2015, 9(3): 2968-80.
[30] ZHANG Shuang, GENOV D A, WANG Yuan, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.
[31] DENG Zilan, FU Tao, OUYANG Zhengbiao, et al. Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances[J]. Applied Physics Letters, 2016, 108(8): 081109.
[32] LASSITER J B, SOBHANI H, KNIGHT M W, et al. Designing and deconstructing the Fano lineshape in plasmonic nanoclusters[J]. Nano Letters, 2012, 12(2): 1058-1062.
[33] ZHU Yu, HU Xiaoyong, HUANG Yongyang, et al. Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures[J]. Advanced Optical Materials, 2013, 1(1): 61-67.
[34] CAO Tun, WEI Chenwei, SIMPSON R E, et al. Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity[J]. Scientific Reports, 2014, 4: 4463.
[35] TASSIN P, ZHANG Lei, ZHAO Rongkuo, et al. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation[J]. Physical Review Letters, 2012, 109(18): 187401.
[36] VERSLEGERS L, YU Zhongfu, RUAN Zhichao, et al. From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures[J]. Physical Review Letters, 2012, 108(8): 083902.
[37] PENG Bo, OZDEMIR S K, CHEN Weijian, et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities[J]. Nature Communications, 2014, 5: 5082.
[38] WAN Weiwei, ZHENG Wenwei, CHEN Yanfeng, et al. From Fano-like interference to superscattering with a single metallic nanodisk[J]. Nanoscale, 2014, 6(15): 9093-9102.
[39] WU C, KHANIKAEV A B, ADATO R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nature Materials, 2011, 11(1): 69-75.

备注/Memo

备注/Memo:
Received:2018-12-10;Accepted:2018-01-03
Foundation:National Natural Science Foundation of China (61501302, 61465004, 61765004, 61764001, 61464003); Natural Science Foundation of Guangxi Province (2018JJA170010)
Corresponding author:Associate professor FU Tao. E-mail: ft85@guet.edu.cn
Citation:LI Qi, LIU Fei, XIAO Gongli, et al. Fano resonance in facile symmetric trimeric Babinet metasurface[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 157-161.
基金项目:国家自然科学基金资助项目(61501302, 61465004, 61765004, 61764001, 61464003); 广西省自然科学基金资助项目 (2018JJA170010)
作者简介:李琦(1976—),男,桂林电子科技大学教授. 研究方向:微纳器件. E-mail:lqmoon@guet.edu.cn
引文:李琦,刘飞,肖功利,等. 简易对称三孔缝Babinet超表面中的Fano共振[J]. 深圳大学学报理工版,2019,36(2):157-161.(英文版)
更新日期/Last Update: 2019-03-07