FU Zhanglong,SHAO Dixiang,ZHANG Zhenzhen,et al.Terahertz frequency up-conversion imaging devices[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):147-151.[doi:10.3724/SP.J.1249.2019.02147]





Terahertz frequency up-conversion imaging devices
1)中国科学院上海微系统与信息技术研究所太赫兹固态技术重点实验室,上海 200050
2)上海理工大学光电信息与计算机工程学院,上海 200093
3)中国科学院大学, 北京 100049
FU Zhanglong1 SHAO Dixiang2 ZHANG Zhenzhen1 LI Ruizhi1 3 and CAO Juncheng1
1)Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P.R.China
2) School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R.China
3)University of Chinese Academy of Sciences, Beijing 100049, P.R.China
semiconductor devices and technology terahertz quantum-well detector frequency up-conversion imaging
太赫兹成像器件是太赫兹技术应用的关键之一.研制一种由分子束外延技术堆叠生长太赫兹量子阱探测器和近红外发光二极管制成的THz频率上转换成像器件,其45°入射角耦合器件峰值探测频率为5.2 THz,峰值响应率为0.22 A/W,噪声等效功率为5.2×1012 W/Hz0.5,可实现对太赫兹量子级联激光器光斑的清晰成像;研制的金属光栅耦合器件可实现正入射成像,有效减小成像图形畸变,并且有利于制备大面积器件.阐述器件的工作原理、制备方法、基本性能和成像性能,并对器件电流-电压特性、成像质量、成像畸变原因等问题进行讨论.该器件利用无像素成像技术,无需低温读数电路,无需阵列倒装封装,为THz成像技术提供一种简便、高性能的途径.
Terahertz (THz) imaging device is one of the key technologies in THz technology applications. A THz frequency up-conversion imaging device made of THz quantum-well photodetectors and light-emitting diode (THz QWP-LEDs) is fabricated by stacking and growing THz QWPs and near-infrared LEDs with molecular beam epitaxy technology. The 45° facet coupler has a peak response of 0.22 A/W at the peak detection frequency of 5.2 THz and a noise equivalent power of 5.2×1012 W/Hz0.5. And the device also has the ability to image the spot of the terahertz quantum cascade laser (THz QCL) clearly. The developed metal grating coupler can achieve normal incidence imaging, effectively reduce the image distortion and is conducive to the preparation of large area devices. The working principle, fabrication method, basic performance and imaging performance of the devices are introduced in detail. The current-voltage characteristics, imaging quality and imaging distortion of the device are discussed. The devices have no need of cryogenic reading integrated circuits and flip-chip package based on pixel-free imaging technology. Therefore, the development of these devices can provide a simple way for high-performance THz imaging.


[1] FU Zhanglong, GU Liangliang, GUO Xuguang, et al. Frequency up-conversion photon-type terahertz imager[J]. Scientific Reports, 2016, 6: 25383.
[2] KNIPPER R, BRAHM A, HEINZ E, et al. THz absorption in fabric and its impact on body scanning for security application[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 999-1004.
[3] ZHOU Zhitao, ZHOU Tao, ZHANG Shaoqing, et al. Multicolor T-ray imaging using multispectral metamaterials[J]. Advanced Science, 2018, 5(7): 1700982.
[4] SHI Shengcai, PAINE S, YAO Qijun, et al. Terahertz and far-infrared windows opened at Dome A in Antarctica[J]. Nature Astronomy, 2017, 1(1): 0001.
[5] KIM D Y, PARK S, HAN R, et al. Design and demonstration of 820-GHz array using diode-connected NMOS transistors in 130-nm CMOS for active imaging[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(2): 306-316.
[6] YANG Xiang, ZHAO Xiang, YANG Ke, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810-824.
[7] MITTLEMAN D M. Twenty years of terahertz imaging[J]. Optics Express, 26(8): 9417-9431.
[8] CARRANZA I E, GRANT J P, GOUGH J, et al. Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 4700508.
[9] DHILLON S S, VITIELLO M S, LINFIELD E H, et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics 2017, 50:043001.
[10] ROGALSKI A, SIZOV F. Terahertz detectors and focal plane arrays[J]. Opto-Electronics Review, 2011, 19(3): 346-404.
[11] 邵棣祥,郭旭光,张戎,等. 多体效应对太赫兹量子阱探测器的影响[J]. 光学学报, 2017, 37(10): 1004001.
SHAO Dixiang, GUO Xuguang, ZHANG Rong, et al. Influence of many body effect on terahertz quantum well photodetectors[J]. Acta Optica Sinica, 2017, 37(10): 1004001.(in Chinese)
[12] ZHANG Rong, SHAO Dixiang, FU Zhanglong, et al. Terahertz quantum well photodetectors with metal-grating couplers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4):38000407.


 Zhang Min,Quan Runai,Su Hong,et al.Investigation of optically pumped continuous terahertz laser in biological imaging[J].Journal of Shenzhen University Science and Engineering,2014,31(No.2(111-220)):160.[doi:10.3724/SP.J.1249.2014.02160]
[2]舒国响,曹利红,熊浩,等.0.24 THz带状注行波放大管交错栅慢波结构研究[J].深圳大学学报理工版,2019,(No.2(111-220)):128.[doi:10.3724/SP.J.1249.2019.02128]
 SHU Guoxiang,CAO Lihong,XIONG Hao,et al.A staggered double vane slow wave structure of 0.24 THz sheet beam travelling wave tube[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):128.[doi:10.3724/SP.J.1249.2019.02128]
[3]赵超,刘文鑫,王勇,等.0.5 THz返波管电子光学系统设计[J].深圳大学学报理工版,2019,(No.2(111-220)):135.[doi:10.3724/SP.J.1249.2019.02135]
 ZHAO Chao,LIU Wenxin,et al.Design of electron optics system for 0.5 THz backward wave oscillator[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):135.[doi:10.3724/SP.J.1249.2019.02135]
 XIA Liangping and CUI Hongliang.Terahertz anisotropic metamaterials based on metal slit ring array[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):152.[doi:10.3724/SP.J.1249.2019.02152]
 SONG Ruiliang and LIU Yibo.A signal generator for ultra-high speed terahertz testing[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):176.[doi:10.3724/SP.J.1249.2019.02176]
 TANG Yahua,SHEN Shiyuan,WANG Lu,et al.Terahertz adjustable metasurface structure based on vanadium dioxide thin film[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):182.[doi:10.3724/SP.J.1249.2019.02182]


Foundation:National Key R&D Program of China (2017YFF0106302); National Natural Science Foundation of China (61775229, 61575214);Shanghai Sailing Program (17YF1429900)
Corresponding author:Professor CAO Juncheng.E-mail: jccao@mail.sim.ac.cn
Citation:FU Zhanglong,SHAO Dixiang,ZHANG Zhenzhen, et al.Terahertz frequency up-conversion imaging devices[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 147-151.(in Chinese)
基金项目:国家重点研发计划资助项目(2017YFF0106302);国家自然科学基金资助项目 (61775229, 61575214);上海市青年科技英才扬帆计划资助项目(17YF1429900)
曹俊诚(1967—),男,中国科学院上海微系统与信息技术研究所研究员、博士生导师,国家杰出青年基金获得者,入选中科院“百人计划”、 国家级新世纪百千万人才工程,国家科技部重大仪器专项首席科学家,上海市优秀学科带头人. 研究方向:太赫兹物理、器件及其通信与成像应用.E-mail:jccao@mail.sim.ac.cn
引文:符张龙,邵棣祥,张真真,等.太赫兹频率上转换成像器件研究[J]. 深圳大学学报理工版,2019,36(2):147-151.
更新日期/Last Update: 2019-03-07