[1]刘强,王琼,欧阳征标.基于混合微腔的高效率太赫兹波产生[J].深圳大学学报理工版,2019,(No.2(111-220)):140-146.[doi:10.3724/SP.J.1249.2019.02140]
 LIU Qiang,WANG Qiong,et al.Efficient terahertz wave generation based on hybrid micro-cavity[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):140-146.[doi:10.3724/SP.J.1249.2019.02140]
点击复制

基于混合微腔的高效率太赫兹波产生()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
期数:
2019年No.2(111-220)
页码:
140-146
栏目:
【专辑:太赫兹技术】
出版日期:
2019-03-20

文章信息/Info

Title:
Efficient terahertz wave generation based on hybrid micro-cavity
文章编号:
201902004
作者:
刘强12王琼12欧阳征标123
1)深圳大学电子与信息工程学院,广东深圳 518060
2) 深圳大学太赫兹技术研究中心,广东深圳 518060
3)深圳大学光电子器件与系统教育部/广东省重点实验室,广东深圳 518060
Author(s):
LIU Qiang1 2 WANG Qiong1 2 and OUYANG Zhengbiao1 2 3
1) College of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) THz Technical Research Center, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
3) Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
非线性光学光学差频回音壁模表面等离激元亚波长局域太赫兹波产生
Keywords:
nonlinear optics optical frequency-difference effect whispering gallery mode surface plasmonic mode sub-wavelength confinement terahertz wave generation
分类号:
TN212;TN602
DOI:
10.3724/SP.J.1249.2019.02140
文献标志码:
A
摘要:
提出并研究基于回音壁共振模和表面等离子激元共振模的混合微腔太赫兹产生系统,运用有限元方法模拟实现了室温下11.7 THz的太赫兹波产生,所获得的太赫兹波模体积小,超过衍射极限,亚波长局域使得Purcell因子达到7.2×103(砷化镓中太赫兹波长的负三次方). 研究表明,该结构的太赫兹波转化效率可达到量子极限(~5.5%),太赫兹波的最高输出功率可达166.3 mW. 该系统可在室温下工作,转化效率接近量子极限,太赫兹输出功率较高,且易于光学集成.
Abstract:
By utilizing the nonlinear optical frequency-difference effect, an efficient terahertz (THz) wave generator based on a hybrid micro-cavity of whispering gallery (WG) mode and surface plasmonic mode is proposed and investigated. Simulations based on finite element method are performed. It is found that the THz wave at the frequency 11.7 THz can be produced at room temperature, and the terahertz modal volume is small, which breaks the diffraction limit, the sub-wavelength confinement in turn produces a high Purcell factor up to 7.2×103 (one in cubic of the THz wavelength in GaAs). Further studies show that the conversion efficiency can reach the quantum limit (~5.5%), and the maximum output of the generated THz wave is as high as 166.3 mW. The advantages of the design include: capability for operation at room temperature, high conversion efficiency that approaches to the quantum limit, high output power for the THz wave, and convenience for all-optical integration.

参考文献/References:

[1] SINHA R, KARABIYIK M, AL-AMIN C, et al. Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator[J]. Scientific Reports, 2015, 5: 9422-9430.
[2] SCHULZ K M, RUSCHE A, PETROV A Y, et al. Integrated nonlinear waveguide optics for high-efficiency and wideband-tunable generation of THz radiation[J]. ACS Photonics, 2018, 5(9): 3779-3787.
[3] ANDRONICO A, MARIANI S, GHIGLIENO F, et al. Tuning of a nonlinear THz emitter[J]. Optics Express, 2012, 20(16): 17678-17683.
[4] YANG Xiaodong, ISHIKAWA A, YIN Xiaobo, et al. Hybrid photonic-plasmonic crystal nanocavities[J]. ACS Nano, 2011, 5(4): 2831-2838.
[5] MU Jianwei, CHEN Lin, LI Xun, et al. Hybrid nano ridge plasmonic polaritons waveguides[J]. Applied Physics Letters, 2013, 103(13): 131107.
[6] LIU Qiang, BIBBO L, ALBIN S, et al. Plasmonic waveguide design for the enhanced forward stimulated brillouin scattering in diamond[J]. Scientific Reports, 2018, 8: 88-96.
[7] LI Chao, ZHANG Tengwei, WANG Huaiyu, et al. Extension and optimization of the axisymmetric 2.5-D eigensolver: toward far-field calculations in stratified backgrounds[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2431-2444.
[8] BRAVO A J, RODRIGUEZ A W, JOANNOPOULOS J D, et al. Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing[J]. Applied Physics Letters, 2010, 96(10): 101110.
[9] SCHAAFSMA M C, RIVAS J G. Semiconductor plasmonic crystals: active control of THz extinction[J]. Semiconductor Science and Technology, 2013, 28(12): 124003-124009.
[10] KIM U W, OH S J, MAENG I, et al. Terahertz electrical characteristics of heavily doped n-GaAs thin films[J]. Journal of the Korean Physical Society, 2007, 50(3): 789-792.
[11] VIJAYRAGHAVAN K, JIANG Yifan, JANG M, et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers[J]. Nature Communications, 2013, 4: 2021-2028.
[12] BIRINDELLI S, FELICI M, WILDMANN J S, et al. Single photons on demand from novel site-controlled GaAsN/GaAsN:H quantum dots[J]. Nano Letters, 2014, 14(3): 1275-1280.
[13] CHO Y H, BELKIN M A, BELYANIN A. Upper limits on terahertz difference frequency generation power in quantum well heterostructures[C]// Proceedings of Optoelectronics and Photonic Materials and Devices. San Francisco, USA: SPIE, 2011: 79530U.
[14] SINHA R, KARABIYIK M, AL-AMIN C, et al. Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator[J]. Scientific Reports, 2015, 5: 9422-9430.

相似文献/References:

[1]郑国梁,欧阳征标,徐世祥.吸收对准相位匹配线性电光效应的影响[J].深圳大学学报理工版,2010,27(2):152.
 ZHENG Guo-liang,OUYANG Zheng-biao,and XU Shi-xiang.The effect of absorption on the quasi-phase-matched linear electro-optic effect[J].Journal of Shenzhen University Science and Engineering,2010,27(No.2(111-220)):152.
[2]夏林中,苏红,管明祥,等.温度调谐的周期极化掺氧化镁铌酸锂振荡器[J].深圳大学学报理工版,2011,28(No.5(377-470)):405.
 XIA Lin-zhong,SU Hong,GUAN Ming-xiang,et al.Temperature tunable optical parametric oscillator based on MgO-doped PPLN[J].Journal of Shenzhen University Science and Engineering,2011,28(No.2(111-220)):405.
[3]倪洁蕾,程亚.飞秒激光成丝若干新效应研究进展[J].深圳大学学报理工版,2014,31(No.1(001-110)):1.[doi:10.3724/SP.J.1249.2014.01001]
 Ni Jielei and Cheng Ya.Several new phenomena in femtosecond laser filamentation[J].Journal of Shenzhen University Science and Engineering,2014,31(No.2(111-220)):1.[doi:10.3724/SP.J.1249.2014.01001]
[4]屈军乐,陈丹妮,杨建军,等.二次谐波成像及其在生物医学中的应用[J].深圳大学学报理工版,2006,23(1):1.
 QU Jun-le,CHEN Dan-ni,YANG Jian-jun,et al. Second harmonic generation imaging and its applications in biomedicine[J].Journal of Shenzhen University Science and Engineering,2006,23(No.2(111-220)):1.
[5]郝中华,刘劲松.高斯光束在光伏光折变晶体中的孤波演化[J].深圳大学学报理工版,2001,18(1):15.
 HAO Zhong-hua,LIU Jin-song.Solitary Evolution of Gaussian Beam in Photovoltaic-photorefractive Crystal[J].Journal of Shenzhen University Science and Engineering,2001,18(No.2(111-220)):15.
[6]龙井华,阮双琛,巨养锋,等.新型超短光脉冲测量技术[J].深圳大学学报理工版,2001,18(4):46.
 LONG Jing-hua,RUAN Shuang-chen,JU Yang-feng and Zhu Qin.New Techniques for Measuring the Ultrashort Optical Pulses[J].Journal of Shenzhen University Science and Engineering,2001,18(No.2(111-220)):46.
[7]李云亭,张明江,刘毅,等.动态噪声差分算法实现拉曼测温仪高精度检测[J].深圳大学学报理工版,2017,34(No.1(001-110)):20.[doi:10.3724/SP.J.1249.2017.01020]
 Li Yunting,Zhang Mingjiang,et al.High precision measurement for Raman distributed temperature sensor by dynamic noise difference algorithm[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):20.[doi:10.3724/SP.J.1249.2017.01020]
[8]刘伟,刘双龙,陈丹妮,等.CARS显微成像系统的空间分辨率标定[J].深圳大学学报理工版,2017,34(No.3(221-330)):272.[doi:10.3724/SP.J.1249.2017.03272]
 Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):272.[doi:10.3724/SP.J.1249.2017.03272]
[9]杨帅军,张建忠,刘毅,等.面向混沌激光器的高精度温控与驱动电路设计[J].深圳大学学报理工版,2018,35(No.5(441-550)):495.[doi:10.3724/SP.J.1249.2018.05495]
 YANG Shuaijun,ZHANG Jianzhong,LIU Yi,et al.Design of precise temperature controller and current driver for chaotic laser[J].Journal of Shenzhen University Science and Engineering,2018,35(No.2(111-220)):495.[doi:10.3724/SP.J.1249.2018.05495]
[10]李绍和,李九生,孙建忠.太赫兹频率编码器[J].深圳大学学报理工版,2019,(No.2(111-220)):162.[doi:10.3724/SP.J.1249.2019.02162]
 LI Shaohe,LI Jiusheng,and SUN Jianzhong.Terahertz frequency coding metasurface[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):162.[doi:10.3724/SP.J.1249.2019.02162]

备注/Memo

备注/Memo:
Received:2018-12-09;Accepted:2018-12-24
Foundation:National Natural Science Foundation of China (61605128, 61275043, 61307048, 11404220); Natural Science Foundation of Guangdong Province (2017A030310455); New Teacher Start-up Foundation of Shenzhen University (2016024)
Corresponding author:Professor OUYANG Zhengbiao.E-mail: zbouyang@szu.edu.cn
Citation:LIU Qiang, WANG Qiong, OUYANG Zhengbiao. Efficient terahertz wave generation based on hybrid micro-cavity[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 140-146.(in Chinese)
基金项目:国家自然科学基金资助项目 (61605128, 61275043, 6130 7048, 11404220);广东省自然科学基金资助项目(2017 A030310455);深圳大学新引进教师科研启动资助项目(2016024)
作者简介:刘强 (1983—),男,深圳大学助理教授、博士.研究方向:太赫兹器件.E-mail:qliu@szu.edu.cn
欧阳征标(1963—),男,深圳大学教授、博士生导师. 广东省千百十省级培养对象,深圳市双百计划人才,深圳市地方级领军人才,中国光学工程学会理事,美国光学学会高级会员,宇航学会光电专委会委员. 研究方向:光子晶体、超材料及其在光通信和太赫兹波段的应用. E-mail:zbouyang@szu.edu.cn
引文:刘强,王琼,欧阳征标.基于混合微腔的高效率太赫兹波产生[J]. 深圳大学学报理工版,2019,36(2):140-146.
更新日期/Last Update: 2019-03-07