[1]宫玉彬,周庆,田瀚文,等.基于电子学的太赫兹辐射源 [J].深圳大学学报理工版,2019,36(No.2(111-220)):111-127.[doi:10.3724/SP.J.1249.2019.02111]
 GONG Yubin,ZHOU Qing,TIAN Hanwen,et al.Terahertz radiation sources based on electronics[J].Journal of Shenzhen University Science and Engineering,2019,36(No.2(111-220)):111-127.[doi:10.3724/SP.J.1249.2019.02111]
点击复制

基于电子学的太赫兹辐射源 ()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.2(111-220)
页码:
111-127
栏目:
【专辑:太赫兹技术】
出版日期:
2019-03-20

文章信息/Info

Title:
Terahertz radiation sources based on electronics
文章编号:
201902001
作者:
宫玉彬周庆田瀚文唐靖超王凯程张雅鑫张波刘頔威
电子科技大学电子科学与工程学院,四川成都 610054
Author(s):
GONG Yubin ZHOU Qing TIAN Hanwen TANG Jingchao WANG Kaicheng ZHANG Yaxin ZHANG Bo and LIU Diwei
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan Province, P.R.China
关键词:
太赫兹辐射源切伦科夫辐射器件电子回旋谐振脉塞束-等离子体系统史密斯-帕塞尔辐射固态太赫兹辐射源
Keywords:
terahertz radiation sources Cherenkov radiation devices electron cyclotron resonance maser beam-plasma system Smith-Purcell radiation solid terahertz radiation source
分类号:
TN12
DOI:
10.3724/SP.J.1249.2019.02111
文献标志码:
A
摘要:
随着太赫兹科学与技术的发展,太赫兹辐射源研究受到越来越广泛的重视.本文对近年来常见的基于电子学的太赫兹辐射源进行综述,包括基于新型慢波结构真空电子器件的仿真设计与实验结果、基于电子回旋谐振脉塞的太赫兹辐射源和基于史密斯-帕塞尔效应的太赫兹辐射源的国内外研究近况,以及基于类等离子体光子晶体的太赫兹辐射源和固态太赫兹辐射源.对太赫兹辐射源在无线通信、成像探测、光谱探测和生物医学等方面的应用进行了展望.
Abstract:
With the development of terahertz (THz) science and technology, THz radiation sources are studied extensively. In order to understand and grasp the research progress of the domestic and international research progress of the THz radiation sources in the recent years, this paper summarizes the THz radiation sources based on electronics, and gives some experimental and simulation results of vacuum electron devices based on the novel slow wave structure. This review also summarizes the domestic and international research progress of THz radiation sources based on electron cyclotron resonance maser, Smith-Purcell, plasma photonic crystal-like beam-plasma system and solid-state devices in the recent years. In addition, this paper presents the outlook of applications of the terahertz radiation sources in the field of wireless communication, imaging detection, spectral analysis and biomedicine.

参考文献/References:

[1] 新华网.天津大学太赫兹超表面全息术研究获突破[EB/OL].(2018-08-02)[2018-12-01]. http://www.xinhuanet.com/politics/2018-08/02/c_129925418.htm?baike
XINHUANET. Breakthrough of terahertz supersurface holography technology in Tianjin University[EB/OL].(2018-08-02)[2018-12-01]. http://www.xinhuanet.com/politics/2018-08/02/c_129925418.htm?baike(in Chinese)
[2] TAREQ E M, VALERIE D, RADHA G,et al.PTH-133 five years of HIFIVE(human factors in virtual endoscopy):an endoscopic non-technical skills simulation programme[J].BMJ Journal, 2018, 67(1): A272.
[3] LACHNER R. Towards 0.7 terahertz silicon germanium heterojunction bipolar technology - the DOTSEVEN project[C]// The 6th SiGe, Ge, and Related Compounds-Materials, Processing and Devices Symposium. Cancun, Mexico: ECS Transactions, 2014: 21-37.
[4] WEI Yanyu, GUO Guo, GONG Yubin, et al. Novel W-band ridge-loaded folded waveguide traveling wave tube[J]. IEEE Electron Device Letters, 2014, 35(10): 1058-1060.
[5] HE Jun, WEI Yanyu, GONG Yubin, et al. Linear analysis of folded double-ridged waveguide slow-wave structure for millimeter wave traveling wave tube[J]. Chinese Physics Letters, 2009, 26(11): 114103.
[6] HOU Yan, GONG Yubin, XU Jin,et al. A novel ridge-vane-loaded folded-waveguide slow-wave structure for 0.22-THz traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2013, 60(3): 1228-1235.
[7] 张亚斌. 相对论带状束毫米波器件的研究[D]. 成都:电子科技大学,2016.
ZHANG Yabin. Study of sheet electron beam relativistic millimeter wave devices[D]. Chengdu: University of Electronic Science and Technology of China, 2016.(in Chinese)
[8] TIAN Hanwen, SHAO Wei, WANG Zhanliang, et al. Simulation and cold test of 220GHz staggered double vane slow wave structure[C]// IEEE International Vacuum Electronics Conference (IVEC). Monterey, USA: IEEE, 2018: 337-338
[9] SHI Xianbao, WANG Zhanliang, TANG Xianfeng, et al. Study on wideband sheet beam traveling wave tube based on staggered double vane slow wave structure[J]. IEEE Transactions on Plasma Science, 2014, 42(12): 3996-4003.
[10] SHAO Wei, SHI Xianbao, ZHOU Qing, et al. Study for 340 GHz staggered double-vane traveling wave tube with phase velocity taper[C]// IEEE International Vacuum Electronics Conference (IVEC). London: IEEE, 2017:1-2.
[11] SHAO Wei, TIAN Hanwen, WANG Zhanliang, et al. Study for 850 GHz sheet beam staggered double-vane traveling wave tube considering the metal loss[C]// IEEE International Vacuum Electronics Conference (IVEC). Monterey, USA: IEEE, 2018: 1-2.
[12] XU Xiong, WEI Yanyu, SHEN Fei, et al. Sine waveguide for 0.22-THz traveling-wave tube[J]. IEEE Electron Device Letters, 2011, 32(8): 1152-1154.
[13] XU Xiong, WEI Yanyu, SHEN Fei, et al. Research of sine waveguide slow-wave structure for a 220-GHz backward wave oscillator[J]. Chinese Physics B, 2012, 21(6): 068402.
[14] ZHANG Luqi, WEI Yanyu, GUO Guo, et al. An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide[J]. Journal of Physics D: Applied Physics, 2016, 49(23): 235102.
[15] ZHANG Luqi, WEI Yanyu, GUO Guo, et al. A ridge-loaded sine waveguide for G-band traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2832-2837.
[16] WANG Zhanliang, ZHOU Qing, GONG Huarong, et al. Development of a 140-GHz folded-waveguide traveling-wave tube in a relatively larger circular electron beam tunnel[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(17): 1914-1923.
[17] LEI Wenqiang, JIANG Yi, ZHOU Quanfeng, et al. Development of D-band continuous-wave folded waveguide traveling-wave tube[C]// IEEE International Vacuum Electronics Conference (IVEC). Beijing: IEEE, 2015: 1-2.
[18] PAN Pan, HU Yinfu, LI Hanyan, et al. Development of G band folded waveguide TWTs[C]// IEEE International Vacuum Electronics Conference (IVEC). Monterey, USA: IEEE, 2016: 1-2.
[19] WANG Yajun, CHEN Zhang, GAO Yang, et al. MEMS-microfabricated folded waveguide circuit for THz TWT[C]// Conference on Smart Sensors, Actuators, and MEMS V. Prague, Czech Republic: SPIE, 2011: 6-7.
[20] HU Peng, LEI Wenqiang, JIANG Yi, et al. Development of a 0.32-THz folded waveguide traveling wave tube[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2164-2169.
[21] GONG Huarong, WANG Qi, DENG Difu, et al. Third-harmonic traveling-wave tube multiplier-amplifier[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2189-2194.
[22] CAI Jun, WU Xianping, FENG Jinjun. Traveling-wave tube harmonic amplifier in terahertz and experimental demonstration[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 648-651.
[23] JOYE C, COOK A, CALAME J, et al. Demonstration of a high power, wideband 220 GHz serpentine waveguide amplifier fabricated by UV-LIGA[C]// IEEE International Vacuum Electronics Conference (IVEC). Paris: IEEE, 2013: 1-2.
[24] BASTEN M A, TUCEK J C, GALLAGHER D A, et al. 233 GHz high power amplifier development at Northrop Grumman[C]// IEEE International Vacuum Electronics Conference (IVEC). Monterey, USA: IEEE, 2016: 1-2.
[25] TUCEK J, BASTEN M, GALLAGHER D, et al. Operation of a compact 1.03 THz power amplifier[C]// IEEE International Vacuum Electronics Conference (IVEC). Monterey, USA: IEEE, 2016: 1-2.
[26] FIELD M, KIMURA T, ATKINSON J, et al. Development of a 100-W 200-GHz high bandwidth mm-wave amplifier[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2122-2128.
[27] 马燕,谢辉,鄢扬.大功率太赫兹电真空器件的研究现状与应用[J].电讯技术,2012, 52(11):1844-1849.
MA Yan, XIE Hui, YAN Yang. Research status and applications of high power terahertz electron vacuum devices[J]. Telecommunication Engineering, 2012, 52(11): 1844-1849.(in Chinese)
[28] LIU Wenxin, ZHANG Zhaochuan, ZHAO Chao, et al. Development of terahertz folded waveguide extended interaction oscillator at IECAS[C]// The 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Copenhagen, Denmark: IEEE, 2016: 1-2.
[29] LIU Shenggang, LIU Diwei, YAN Yang, et al. Theoretical and experimental investigations on the coaxial gyrotron with two electron beams[C]// The 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Hong Kong, China: IEEE, 2015: 1-2.
[30] LIU Diwei, YAN Yang, YU Sheng, et al. Theoretical and experimental investigations on a dual-frequency operation coaxial gyrotron with two electron beams[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 701-706.
[31] FU Wenjie, YAN Yang, LI Xiaoyun, et al. The experiment of a 220GHz gyrotron with a pulse magnet[J]. Journal of Millimeter and Terahertz Waves, 2010, 31(4): 404-410.
[32] YUAN Xuesong, ZHU Weiwei, ZHANG Yu, et al. A fully-sealed carbon-nanotube cold-cathode terahertz gyrotron[J]. Scientific Reports, 2016, 6: 32936.
[33] ZHAO Qixiang, YU Sheng. The nonlinear designs and experiments on a 0.42-THz second harmonic gyrotron with complex cavity[J]. IEEE Transactions on Electron Devices, 2017, 64(2): 564-570.
[34] 关晓通.太赫兹准光电子回旋脉塞的研究[D]. 成都:电子科技大学,2018.
GUANG Xiaotong. Research on terahertz quasi-optical electron cyclotron maser[D]. Chengdu: University of Electronic Science and Technology of China, 2018.(in Chinese)
[35] HE Wenlong, CRAIG R D, ZHANG Liang, et al. High power wide-band gyro-BWO operating towards the terahertz region[C]// APS Division of Plasma Physics Meeting. Denver, USA: APS, 2013: 165101.
[36] HE Wenlong, DONALDSON C R, ZHANG Liang, et al. Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region[J]. Physical Review Letters, 2017, 119(18): 184801.
[37] SMITH S J, PURCELL E M. Visible light from localized surface charges moving across a grating[J]. Physical Review, 1953, 92(4): 1069.
[38] RUSIN F S, BOGOMOLOV G D. Generation of electromagnetic oscillations in an open resonator[J]. JETP Letters, 1966, 4: 160-162.
[39] URATA J, GOLDSTEIN M, KIMMITT M F, et al. Superradiant smith-purcell emission[J]. Physical Review Letters, 1998, 80(3): 516-519.
[40] KESAR A S, MARSH R A, TEMKIN R J. Power measurement of frequency-locked Smith-Purcell radiation[J]. Physical Review Special Topics: Accelerators and Beams, 2006, 9(2): 022801.
[41] SHIN Y M, SO J K, JAND K H, et al. Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams[J]. Applied Physics Letters, 2007, 90(3): 031502.
[42] OKAJIMA A, MATSIO T. Electron-beam induced terahertz radiation from graded metallic grating[J]. Optics Express, 2014, 22(14): 17490-17496.
[43] LIU Weihao, XU Zhengyuan. Special Smith-Purcell radiation from an open resonator array[J]. New Journal of Physics, 2014, 16(7): 073006.
[44] LIANG Yifan, DU Yingchao, SU Xiaolu, et al. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams[J]. Applied Physics Letters, 2018, 112(5): 053501.
[45] LIU Liu, CHANG Huiting, ZHANG Chi, et al. Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: loss and efficiency[J]. Physical Review B, 2017, 96(16): 165435.
[46] LIU Shenggang, HU Min, ZHANG Yaxin, et al. Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam[J]. Physical Review E, 2009, 80(3): 036602.
[47] ZHOU Qing,YANG Shengpeng, XU Jin, et al. THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime[J]. Physics of Plasmas, 2016, 23(6): 053101.
[48] YANG Shengpeng, ZHOU Qing, GONG Yubin, et al. The instability in the radially non-uniform electron beam-ion channel system[J]. Physics of Plasmas, 2015, 22(10): 103108.
[49] HITOSHI H, ATSUSHII M. Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals[J]. Journal of Plasma and Fusion Research, 2004, 80(2): 89-90.
[50] ZHOU Qing, YANG Shengpeng, TANG Changjian, et al. Study on plasma-photonic-crystal-like beam-plasma system[J]. The Journal of Engineering, 2018, 2018(14): 669-672.
[51] SHU Guoxiang, ZHANG Liang, YIN H, et al. Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam[J]. Applied Physics Letters, 2018, 112(3): 033504.
[52] SHU Guoxiang, YIN H, ZHANG Liang, et al. Demonstration of a planar W-band, kW-level extended interaction oscillator based on a pseudospark-sourced sheet electron beam[J]. IEEE Electron Device Letters, 2018, 39(3): 432-435.
[53] HE Wenlong, ZHANG Liang, BOWES D, et al. Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam[J]. Applied Physics Letters, 2015, 107(13): 133501.
[54] MAESTRINI A, MEHDI I, SILES J, et al. Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 177-185
[55] 韩祎炜. GaAs单片集成650 GHz三倍频器的研究[D]. 成都:电子科技大学,2015.
HAN Weiwei. The research of GaAs monolithic integrated 650 GHz frequency tripler[D]. Chengdu: University of Electronic Science and Technology of China, 2015.(in Chinese)
[56] SILES J V, LEE C, LIN R, et al. Capability of broadband solid-state room-temperature coherent sources in the terahertz range[C]// The 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Tucson, USA: IEEE, 2014: 1-3.
[57] WANG H, PARDO D, MERRITT M, et al. 280 GHz frequency multiplied source for meteorological Doppler radar applications[C]// The 8th UK, Europe, China Millimeter Waves and THz Technology Workshop. Cardiff, UK: IEEE, 2015: 1-4.
[58] HENRY M, REA S, BREWSTER N, et al. Design and development of Schottky diode frequency multipliers for the MetOp-SG satellite instruments[C]// The 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen, Denmark: IEEE, 2016: 1-2.
[59] LIU Hairui, WIEGAS C, POWELL J, et al. A high power Schottky diode frequency multiplier chain at 360 GHz for Gyro TWA applications[C]// The 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies. Liverpool, UK: IEEE, 2017: 1-2.
[60] 吴三统. 基于单片集成二极管技术的太赫兹倍频链路设计[D]. 成都:电子科技大学,2014.
WU Santong. Investigation of monolithically integrated diode technology for terahertz multiple link[D]. Chengdu: University of Electronic Science and Technology of China, 2014.(in Chinese)
[61] REN Tianhao, ZHANG Yong, YAN Bo, et al. A 330-500 GHz zero-biased broadband tripler based on terahertz monolithic integrated circuits[J]. Chinese Physics Letters, 2015, 32(2): 020702
[62] ZHANG Yong, ZHONG Wei, REN Tianhao, et al. A 220 GHz frequency tripler based on 3D electromagnetic model of the Schottky diode and the field-circuit co-simulation method[J]. Microwave and Optical Technology Letters, 2016, 58(7): 1647-1651.
[63] 闵应存. 220 GHz太赫兹倍频链路研究[D]. 成都:电子科技大学,2015.
MIN Yingcun. The research of 220 GHz multiplier chain[D]. Chengdu: University of Electronic Science and Technology of China, 2014.(in Chinese)
[64] DEAL W R, LEONG K, RADISIC V, et al. Low noise amplification at 0.67 THz using 30 nm InP HEMTs[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(7): 368-370.
[65] DEAL W R, MEI X B, RADISIC V, et al. Demonstration of a 0.48 THz amplifier module using InP HEMT transistors[J]. IEEE Microwave and Wireless Components Letters, 2010, 20(5): 289-291.
[66] 刘海涛. 太赫兹无线通信系统研究与设计[D]. 成都: 电子科技大学,2014.
LIU Haitao. Research and design of terahertz wireless communication system[D]. Chengdu: University of Electronic Science and Technology of China, 2014.(in Chinese)
[67] KIM S H, FAN R, DOMINSKI F. ViSAR: a 235 GHz radar for airborne applications[C]// The IEEE Radar Conference. Oklahoma City, USA: IEEE, 2018: 1549-1554.
[68] BENAKAPRASAD B, EBLABLA A, LI X,et al. Terahertz microstrip elevated stack antenna technology on GaN-on-low resistivity silicon substrates for TMIC[C]// The 46th European Microwave Conference (EuMC). London: IEEE, 2016: 413-416.
[69] ALEXANDER N E, ALDERMAN B, ALLONA F, et al. TeraSCREEN: multi-frequency multi-mode terahertz screening for border checks[C]// Conference on Passive and Active Millimeter-Wave Imaging XVII. Baltimore, USA: SPIE, 2014: 907802.
[70] 李志良,冯进军,蔡军.太赫兹回旋管和动态核极化核磁共振的研究发展[J].真空科学与技术学报,2015, 35(6):744-751.
LI Zhiliang, FENG Jinjun, CAI Jun. Latest progress of THz gyrotron and dynamic nuclear polarization enhanced nuclear magnetic resonance[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(6): 744-751.(in Chinese)
[71] GRISCHKOWSKY D R, SREN K, EXTER M V, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. Journal of the Optical Society of America B, 1990, 7(10): 2006-2015.
[72] JOYCE H J, DOCHERTY C J, GAO Qiang, et al. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy[J]. Nanotechnology, 2013, 24(21): 214006.
[73] EISELE M, COCKER T L, HUBER M, et al. Ultrafast multi-terahertz nanoscopy with sub-cycle temporal resolution[C]// Conference on Lasers and Electro-Optics. San Jose, USA: OSA, 2014: FTh4K.3.
[74] ULBRICHT R, HENDRY E, SHAN Jie, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy[J]. Reviews of Modern Physics, 2011, 83(2): 543-586.
[75] MCINTOSH A I, YANG Bin, GOLDUP S M, et al. Terahertz spectroscopy: a powerful new tool for the chemical sciences?[J]. Chemical Society Reviews, 2012, 41(6): 2072-2082.
[76] JOYCE H J, BOLAND J L, DAVIES C L, et al. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy[J]. Semiconductor Science and Technology, 2016, 31(10): 103003.
[77] YANG Xiang, ZHAO Xiang, YANG Ke, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810-824.
[78] DHILLON S S, VITIELLO M S, LINFIELD E H, et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 2017, 50(4): 043001.
[79] SIBIK J, ZEITLER J A. Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy [J]. Advanced Drug Delivery Reviews, 2016, 100: 147-157.
[80] ZEITLER J A, TADAY P F, NEWNHAM D A, et al. Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review[J]. Journal of Pharmacy and Pharmacology, 2007, 59(2): 209-223.
[81] WANG Kaiqiang, SUN Dawen, PU Hongbin. Emerging non-destructive terahertz spectroscopic imaging technique: principle and applications in the agri-food industry[J]. Trends in Food Science & Technology, 2017, 67: 93-105.
[82] FUKUNAGA K, PICOLLO M. Terahertz spectroscopy applied to the analysis of artists’ materials[J]. Applied Physics A: Materials Science & Processing, 2010, 100(3): 591-597.
[83] XIE Lijuan, YAO Yang, YING Yibin. The application of terahertz spectroscopy to protein detection: a review[J]. Applied Spectroscopy Reviews, 2014, 49(6): 448-461.
[84] WILMINK G J, GRUNDT J E. Invited review article: current state of research on biological effects of terahertz radiation[J]. Journal of Infrared Millimeter and Terahertz Waves, 2011, 32(10): 1074-1122.
[85] HUA Yuanyuan, WANG Xiaoshu, ZHANG Yu, et al. Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells[J]. Molecular Medicine Reports, 2012, 5(4): 981-987.
[86] TANG Jingchao, YIN Hairong, MA Jialu, et al. Terahertz electric field-induced membrane electroporation by molecular dynamics simulations[J]. Journal of Membrane Biology, 2018, 251(5/6): 681-693.
[87] HEIDARI A. Mobile health[M]. New York, USA: Springer, 2015: 663-670.
[88] PARROTT E P, SUN Yiwen, PICKWELL-MACPHERSON E. Terahertz spectroscopy: its future role in medical diagnoses[J]. Journal of Molecular Structure, 2011, 1006(1/2/3): 66-76.
[89] SIEGEL H P. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10): 2438-2447.
[90] 周俊, 刘盛纲. 太赫兹生物医学应用的研究进展[J]. 现代应用物理, 2014, 5(2): 85-97.
ZHOU Jun, LIU Shenggang. Research progress of terahertz biomedical applications[J]. Modern Applied Physics, 2014, 5(2): 85-97.(in Chinese)
[91] XU Yao, HAVENITH M. Perspective: watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy[J]. Journal of Chemical Physics, 2015, 143(17): 170901.
[92] 毛莉, 刘羽, 田晖艳, 等. 太赫兹技术在生物医学应用中的安全性探讨[J]. 国际检验医学杂志, 2018, 39(1): 74-76.
MAO Li, LIU Yu, TIAN Huiyan, et al. Safety discussion of Terahertz technology in biomedical applications[J]. International Journal of Laboratory Medicine, 2018, 39(1): 74-76.(in Chinese)

备注/Memo

备注/Memo:
Received:2018-12-27;Accepted:2019-01-20
Foundation:National Natural Science Foundation of China (61531010)
Corresponding author:Professor GONG Yubin.E-mail: ybgong@uestc.edu.cn
Citation:GONG Yubin, ZHOU Qing, TIAN Hanwen,et al.Terahertz radiation sources based on electronics[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 111-127.(in Chinese)
基金项目:国家自然科学基金资助项目(61531010)
作者简介:宫玉彬(1967—),男,电子科技大学教授、博士生导师,长江学者特聘教授,国家杰出青年基金获得者.研究方向:毫米波、太赫兹真空电子学及太赫兹生物学.E-mail:ybgong@uestc.edu.cn
引文:宫玉彬,周庆,田瀚文,等. 基于电子学的太赫兹辐射源[J]. 深圳大学学报理工版,2019,36(2):111-127.
更新日期/Last Update: 2019-03-07