LI Chun,HU Xiaoying,HE Tianying,et al.Recent progress on transfer techniques oftwo-dimensional atomically thin semiconductor[J].Journal of Shenzhen University Science and Engineering,2018,35(3):257-266.[doi:10.3724/SP.J.1249.2018.03257]





Recent progress on transfer techniques oftwo-dimensional atomically thin semiconductor
电子科技大学光电科学与工程学院, 四川成都 610054
LI Chun HU Xiaoying HE Tianying SUN Peihua and LAN Changyong
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan Province, P.R.China
nanomaterial two-dimensional material transition metal dichalcogenides dry transfer wet transfer Van del Waals heterostructure
O 613.5;O 614.61
实现不同基底间高效率、高质量的二维原子晶体转移(即转移技术),是开展二维晶体异质结及柔性器件研究与应用的关键. 近年以二硫化钼为代表的过渡金属硫化物(transition metal dichalcogenides,TMDs)二维半导体已成为继石墨烯之后的二维材料研究热点. 目前,TMDs常用转移技术主要包括湿法转移、干法转移、热释放胶带辅助、表面能辅助、鼓泡转移以及真空热压法等. 这些方法各有利弊:湿法转移成本低、步骤简洁,但依赖聚合物支撑,容易对TMDs造成污染;干法转移借助精密位移技术可实现精准控制,特别适用微晶定位转移,但转移成功率有待提升;热释放胶带巧妙利用金属膜与TMDs二维材料间较强的吸附力,能够在不转移的情况下,直接在原始基底上构造阵列结构,但步骤相对复杂;表面能辅助法利用水在不同界面表面能差异,可实现快速自动剥离,但易引入褶皱;鼓泡转移则是通过电化学或超声方式产生的气泡崩塌使二维材料与基底界面分离,同样材料表面容易产生褶皱和破裂等缺陷;真空热压法在组装高质量、大面积多层异质结方面独具优势. 该述评可为恰当选择转移方法提供指引.
High efficiency and high quality transfer techniques of two-dimensional (2D) materials between different substrates are vital for fabrication of 2D heterojunctions and their flexible devices. Triggered by graphene, 2D transition metal dichalcogenides (TMDs) are becoming a hot topic in 2D material research community. In the past few years, various transfer techniques mainly including wet transfer, dry transfer, thermal release tape assisted, surface energy assisted transfer, bubble transfer, and programmed vacuum stack transfer have been demonstrated. Their comparisons show that the wet transfer is the most popular one, but it relies on the polymer support and is prone to contamination of 2D materials. The dry transfer is carried out under the precise position control by a three-dimensional micromanipulator, therefore, it is suitable for building heterojunctions based on mechanical exfoliated microflake crystals. However, the efficiency is still relatively low. The thermal release tape assisted technique utilizing the strong adhesion force between the metal film and the TMDs can construct arrays directly on original substrate without transfer, however the steps are relatively complex. The surface energy assisted transfer can realize fast and automatically peel off the TMDs from the substrates according to the difference of surface energies, but it is easy to introduce folds. The bubble transfer is carried out by the bubble collapse caused by ultrasonic or electrochemical reaction, then separates the 2D material from the substrate, but the surface of the TMDs is prone to wrinkle and fracture. Recently, programmed vacuum stack shows unique advantages in assembling multi-layer heterojunction with large-scale and high-quality. This review not only provides a scientific reference for on-demand transfer method selection, but also sheds light on the development of new transfer technologies.


[1] TIEN D H, PARK J Y, KIM K B, et al. Study of graphene-based 2D-heterostructure device fabricated by all-dry transfer process[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3072-3078.
[2] ZHANG Jincan, LIN Li, SUN Luzhao, et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells[J]. Advanced Materials, 2017, 29(26): 1700639.
[3] 陈牧,颜悦,张晓锋,等.大面积石墨烯薄膜转移技术研究进展[J].航空材料学报,2015, 35(2):1-11.
CHEN Mu, YAN Yue, ZHANG Xiaofeng, et al. Advanced in large-area graphene film transfer techniques[J]. Journal of Aeronautical Materials, 2015, 35(2): 1-11.(in Chinese)
[4] 黄曼,郭云龙,武斌,等.化学气相沉积法合成石墨烯的转移技术研究进展[J].化学通报,2012, 75(11):974.
HUANG Man, GUO Yunlong, WU Bin,et al. Progress in transfer techniques of graphene synthesized by chemical vapor deposition[J]. Chemistry, 2012, 75(11): 974.(in Chinese)
[5] BOSCA A, PEDROS J, MARTINEZ J, et al. Automatic graphene transfer system for improved material quality and efficiency[J]. Scientific Reports, 2016, 6: 21676.
[6] ZHANG Guohui, GUEELL A G, KIRKMAN P M, et al. Versatile polymer-free graphene transfer method and applications[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 8008-8016.
[7] ZHANG Zhikun, DU Jinhong, ZHANG Dingdong, et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes[J]. Nature Communications, 2017, 8: 14560.
[8] CHEN Yi, GONG Xiaolei, GAI Jinggang. Progress and challenges in transfer of large-area graphene films[J]. Advance Science, 2016, 3(8): 1500343.
[9] WANG Xiaotian, KANG K, CHEN Siwei, et al. Location-specific growth and transfer of arrayed MoS2 monolayers with controllable size[J]. 2D Materials, 2017, 4(2): 025093.
[10] ELAS A L, PEREA-LOPEZ N, CASTRO-BELTRAN A A, et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers[J]. ACS Nano, 2013, 7(6): 5235-5242.
[11] LIU Kengku, ZHANG Wenjing, LEE Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3): 1538-1544.
[12] NGOC H V, QIAN Yongteng, HAN S K, et al. PMMA-etching-free transfer of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer method[J]. Scientific Reports, 2016, 6: 33096.
[13] YANG S Y, OH J G, JUNG D Y, et al. Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom[J]. Small, 2015, 11(2): 175-181.
[14] KHAN U, MAY P, O’NEILL A, et al. Polymer reinforcement using liquid-exfoliated boron nitride nanosheets[J]. Nanoscale, 2013, 5(2): 581-587.
[15] LEE Y H, YU Lili, WANG Han, et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces[J]. Nano Letters, 2013, 13(4): 1852-1857.
[16] SALVATORE G A, MUENZENRIEDER N, BARRAUD C A, et al. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate[J]. ACS Nano, 2013, 7(10): 8809-8815.
[17] CALDWELL J D, ANDERSON T J, CULBERTSON J C, et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates[J]. ACS Nano, 2010, 4(2): 1108-1114.
[18] UWANNO T, HATTORI Y, TANIGUCHI T, et al. Fully dry PMMA transfer of graphene on h-BN using a heating/cooling system[J]. 2D Materials, 2015, 2(4): 041002.
[19] YANG Rui, ZHENG Xuqian, WANG Zenghui, et al. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing[J]. Journal of Vacuum Science & Technology B, 2014, 32(6): 061203.
[20] MA Xuezhi, LIU Qiushi, XU Da, et al. Capillary-force-assisted clean-stamp transfer of two-dimensional materials[J]. Nano Letters, 2017, 17(11): 6961-6967.
[21] SCHNEIDER G F, CALADO V E, ZANDBERGEN H A, et al. Wedging transfer of nanostructures[J]. Nano Letters, 2010, 10(5): 1912-1916.
[22] LI Hai, WU J, HUANG Xiao, et al. A universal, rapid method for clean transfer of nanostructures onto various substrates[J]. ACS Nano, 2014, 8(7): 6563-6570.
[23] GURARSLAN A, YU Yifei, SU Liqin, et al. Surface-energy-assisted perfect transfer of centimeter-scale mono layer and few-layer MoS2 films onto arbitrary substrates[J]. ACS Nano, 2014, 8(11): 11522-11528.
[24] KOZAWA D, CARVALHO A, VERZHBITSKIY I A, et al. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures[J]. Nano Letters, 2016, 16(7): 4087-4093.
[25] YU Hua, LIAO Mengzhou, ZHAO Wenjuan, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films[J]. ACS Nano, 2017, 11(12): 12001-12007.
[26] MURATA A, OSHIMA T, ARIMITSU Y, et al. Method of heat-peeling chip cut pieces from heat peel type adhesive sheet, electronic part, and circuit board: U.S.Patent Application 10/485,153[P]. 2002-07-23.
[27] LIN Ziyuan, ZHAO Yuda, ZHOU Changjian, et al. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film[J]. Scientific Reports, 2015, 5: 18596.
[28] RIEDL C, COLETTI C, STARKE U. Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation[J]. Journal of Physics Applied Physics, 2010, 43(37): 221-229.
[29] ZHAO Jing, YU Hua, CHEN Wei, et al. Patterned peeling 2D MoS2 off the substrate[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16546-16550.
[30] ROSA D L, LINDVALL N, COLE M T, et al. Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu[J].Applied Physics Letters, 2013, 102(2): 022101.
[31] YUN S J, CHAE S H, KIM H, et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils[J]. ACS Nano, 2015, 9(5): 5510-5519.
[32] MA Donglin, SHI Jianping, JI Qingqing, et al. A universal etching-free transfer of MoS2 films for applications in photodetectors[J]. Nano Research, 2015, 8(11): 3662-3672.
[33] KANG K, LEE K H, HAN Yimo, et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures[J]. Nature, 2017, 550(7675): 229-233.
[34] BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J].Nature Nanotechnology, 2010, 5(8): 574-578.
[35] JUANG Z Y, WU C Y, LU A Y, et al. Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process[J]. Carbon, 2010, 48(11): 3169-3174.
[36] KOBAYASHI T, BANDO M, KIMURA N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process[J]. Applied Physics Letters, 2013, 102(2): 023112.
[37] MCMANUS D, VRANIC S, WITHERS F, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures[J]. Nature Nanotechnology, 2017, 12(4): 343-350.


 ZHOU Xiao-ming,XIN Hong,YOU Zhi-jun,et al.Synthesis of nano-structured CePO4 films[J].Journal of Shenzhen University Science and Engineering,2010,27(3):211.
 LI Zheng-cao,YU Xiao-yi,MIAO Wei,et al.The preparation and behavior in annealing of the yttria dispersed Ferrum films[J].Journal of Shenzhen University Science and Engineering,2010,27(3):273.
 MA Yun-zhu,LI Jing,and LIU Wen-sheng.Preparation and growth mechanism of tungsten whiskers[J].Journal of Shenzhen University Science and Engineering,2011,28(3):183.
 CAO Hui-qun,ZHANG Xin-peng,FAN Xian-ping,et al.Research progress on synthesis of CuIn1-xGaxSe2 nanoparticles[J].Journal of Shenzhen University Science and Engineering,2012,29(3):247.[doi:10.3724/SP.J.1249.2012.03247]
 Ru Lili,Meng Yuedong,and Chen Longwei.Influence of Helium plasma pre-treatment on properties of polycrystalline silicon films[J].Journal of Shenzhen University Science and Engineering,2013,30(3):398.[doi:10.3724/SP.J.1249.2013.04398]
 XU Hong,LIU Jian-hong,CAI Hong-hua and TIAN De-yu.Synthesis of Nanometer-sized Cerium Oxide and Its Effect on Catalyzing Decomposition of Absorbent Powder[J].Journal of Shenzhen University Science and Engineering,2002,19(3):13.
 LI Chengyin,NIU Zhihui,LEI Xiangyu,et al.Research progress of the preparation, properties and application of phosphorene[J].Journal of Shenzhen University Science and Engineering,2018,35(3):234.[doi:10.3724/SP.J.1249.2018.03234]
 ZHANG Han,ZOU Jifei,LUO Shaojuan,et al.Research progress of gas sensors based on two-dimensional materials[J].Journal of Shenzhen University Science and Engineering,2018,35(3):221.[doi:10.3724/SP.J.1249.2018.03221]
 SONG Zongpeng,ZHU Haiou,JIANG Lingfeng,et al.Femtosecond laser-induced optical response of monolayer WS2[J].Journal of Shenzhen University Science and Engineering,2018,35(3):611.[doi:10.3724/SP.J.1249.2018.06611]
 LI Qihua,DENG Libo,and ZHANG Peixin.Optimization of tin oxide-based electron transport layer for perovskite solar cells[J].Journal of Shenzhen University Science and Engineering,2019,36(3):392.[doi:10.3724/SP.J.1249.2019.04392]


Foundation:National Natural Science Foundation of China (61475030,61522403,61605024)
Corresponding author:Professor LI Chun. E-mail: lichun@uestc.edu.cn
Citation:LI Chun, HU Xiaoying,HE Tianying,et al. Recent progress on transfer techniques of two-dimensional atomically thin semiconductor[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(3): 257-266.(in Chinese)
作者简介:李春(1980—),男,电子科技大学教授、博士生导师、国家自然科学优秀青年基金获得者. 研究方向:光电功能材料与器件. E-mail: lichun@uestc.edu.cn
引文:李春,胡晓影,何天应,等. 二维原子晶体半导体转移技术研究进展[J]. 深圳大学学报理工版,2018,35(3):257-266.
更新日期/Last Update: 2018-04-28