[1]张晗,邹吉菲,罗劭娟,等.基于二维材料气体传感器的研究[J].深圳大学学报理工版,2018,35(3):221-233.[doi:10.3724/SP.J.1249.2018.03221]
 ZHANG Han,ZOU Jifei,LUO Shaojuan,et al.Research progress of gas sensors based on two-dimensional materials[J].Journal of Shenzhen University Science and Engineering,2018,35(3):221-233.[doi:10.3724/SP.J.1249.2018.03221]
点击复制

基于二维材料气体传感器的研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第35卷
期数:
2018年第3期
页码:
221-233
栏目:
材料科学
出版日期:
2018-05-15

文章信息/Info

Title:
Research progress of gas sensors based on two-dimensional materials
文章编号:
201803001
作者:
张晗1邹吉菲1罗劭娟1黄扬2范滇元1
1)深圳大学-新加坡国立大学光电科技协同中心,广东深圳 518060
2)深圳大学材料学院,广东深圳 518060
Author(s):
ZHANG Han1 ZOU Jifei1 LUO Shaojuan1 HUANG Yang2 and FAN Dianyuan1
1) SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
材料化学气体传感器二维材料气体检测纳米复合物表面修饰
Keywords:
materials chemistry gas sensor 2D materials gas detection nanocomposite surface modification
分类号:
TB 381
DOI:
10.3724/SP.J.1249.2018.03221
文献标志码:
A
摘要:
二维材料因其独特的物理化学特性在电子、光伏、医药及复合材料等方面引起高度关注,同时在气体传感应用方面也显示出巨大潜力.本研究集中阐述二维层状纳米材料在气体传感应用方面的进展,介绍了其气体传感应用的基本原理,列举了近期气体传感研究中典型的二维纳米材料,包括石墨烯、过渡金属硫化物及磷烯等,评述了二维材料气体传感器的应用前景和挑战.
Abstract:
Two-dimensional (2D) materials have drawn tremendous attentions because of their unique physical and chemical properties and their amazing applications in electronics, photovoltaics, pharmaceuticals, composite materials, etc. And 2D materials have also shown great potential in gas sensing applications. In this review, we describe systematically fundamental mechanism of gas-sensing applications and introduce the recent progress of gas sensors based on typical 2D nanomaterials (including graphene, transition metal dichaldogenides and black phosphorene) in details. Following that, the critical challenges and future prospects are highlighted for the development of high performance gas sensors based on 2D materials.

参考文献/References:

[1] WAGNER T, HAFFER S, WEINBERGER C, et al. Mesoporous materials as gas sensors[J]. Chemical Society Reviews, 2013, 42(9): 4036-4053.
[2] LI C, BAI H, SHI G. Conducting polymer nanomaterials: electrosynthesis and applications[J]. Chemical Society Reviews, 2009, 38(8): 2397-2409.
[3] KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2): 1105-1125.
[4] SU Shao, WU Wenhe, GAO Jimin, et al. Nanomaterials-based sensors for applications in environmental monitoring[J]. Journal of Materials Chemistry, 2012, 22(35): 18101-18110.
[5] SUN Yufeng, LIU Shaobo, MENG Fanli, et al. Metal oxide nanostructures and their gas sensing properties: a review[J]. Sensors, 2012, 12(3): 2610-2631.
[6] FINE G F, CAVANAGH L M, AFONJA A, et al. Metal oxide semi-conductor gas sensors in environmental monitoring[J]. Sensors, 2010, 10(6): 5469-5502.
[7] SCHWIERZ F, PEZOLDT J, GRANZNER R. Two-dimensional materials and their prospects in transistor electronics[J]. Nanoscale, 2015, 7(18): 8261-8283.
[8] ZHOU Xing, GAN Lin, TIAN Wenming, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors[J]. Advanced Materials, 2015, 27(48): 8035-8041.
[9] SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.
[10] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[11] FOWLER J D, ALLEN M J, TUNG V C, et al. Practical chemical sensors from chemically derived graphene[J]. ACS Nano, 2009, 3(2): 301-306.
[12] CHUNG M G, KIM D H, SEO D K, et al. Flexible hydrogen sensors using graphene with palladium nanoparticle decoration[J]. Sensors and Actuators B: Chemical, 2012, 169(9): 387-392.
[13] KIRIYA D, TOSUN M, ZHAO P, et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen[J]. Journal of the American Chemical Society, 2014, 136(22): 7853-7856.
[14] TONGAY S, ZHOU Jian, ATACA C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating[J]. Nano Letters, 2013, 13(6): 2831-2836.
[15] ARIGA K, VINU A, JI Qingmin, et al. A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase[J]. Angewandte Chemie International Edition, 2008, 47(38): 7254-7257.
[16] LI Zhen, LU Jun, LI Shangde, et al. Orderly ultrathin films based on perylene/poly(N-vinyl carbazole) assembled with layered double hydroxide nanosheets: 2D fluorescence resonance energy transfer and reversible fluorescence response for volatile organic compounds[J]. Advanced Materials, 2012, 24(45): 6053-6057.
[17] ZHU Yanwu, MURALI S, CAI Weiwei, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924.
[18] SUN Yongfu, GAO Shan, LEI Fengcai, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis[J]. Chemical Society Reviews, 2015, 44(3): 623-636.
[19] YANG Guohai, ZHU Chengzhou, DU Dan, et al. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine[J]. Nanoscale, 2015, 7(34): 14217-14231.
[20] LIU Biliu, CHEN Liang, LIU Gang, et al. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors[J]. ACS Nano, 2014, 8(5): 5304-5314.
[21] DUA V, SURWADE S P, AMMU S, et al. All-organic vapor sensor using inkjet-printed reduced graphene oxide[J]. Angewandte Chemie International Edition, 2010, 49(12): 2154-2157.
[22] ROBINSON J T, PERKINS F K, SNOW E S, et al. Reduced graphene oxide molecular sensors[J]. Nano Letters, 2008, 8(10): 3137-3140.
[23] EISELE I, DOLL T, BURGMAIR M. Low power gas detection with FET sensors[J]. Sensors and Actuators B: Chemical, 2001, 78(1): 19-25.
[24] ZHANG Zhangyuan, ZOU Xuming, XU Lei, et al. Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor[J]. Nanoscale, 2015, 7(22): 10078-10084.
[25] LU G, PARK S, YU K, et al. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations[J]. ACS Nano, 2011, 5(2): 1154-1164.
[26] ARSAT R, BREEDON M, SHAFIEI M, et al. Graphene-like nano-sheets for surface acoustic wave gas sensor applications[J]. Chemical Physics Letters, 2009, 467(4): 344-347.
[27] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[28] YUAN Wenjing, SHI Gaoquan. Graphene-based gas sensors[J]. Journal of Materials Chemistry A, 2013, 1(35): 10078-10091.
[29] HE Qiyuan, WU Shixin, YIN Zongyou, et al. Graphene-based electronic sensors[J]. Chemical Science, 2012, 3(6): 1764-1772.
[30] 孙丰强, 许适溥. 石墨烯材料在气体传感器中的应用[J]. 华南师范大学学报自然科学版, 2013, 45(6): 92-98.
SUN Fengqiang, XU Shifu. The application of graphene in gas sensor[J]. Journal of South China Normal University Natural Science Edition, 2013, 45(6): 92-98.(in Chinese)
[31] RUMYANTSEV S, LIU Guanxiong, SHUR M S, et al. Selective gas sensing with a single pristine graphene transistor[J]. Nano Letters, 2012, 12(5): 2294-2298.
[32] KIM Y H, SANG J K, KIM Y J, et al. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending[J]. ACS Nano, 2015, 9(10): 10453-10460.
[33] KALITA G, WAKITA K, UMENO M. Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application[J]. Rsc Advances, 2012, 2(7): 2815-2820.
[34] SUK J W, KITT A, MAGNUSON C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5(9): 6916-6924.
[35] GAUTAM M, JAYATISSA A H. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles[J]. Solid State Electronics, 2012, 78(1): 159-165.
[36] PREZIOSO S, PERROZZI F, GIANCATERINI L, et al. Graphene oxide as a practical solution to high sensitivity gas sensing[J]. The Journal of Physical Chemistry C, 2013, 117(20): 10683-10690.
[37] BI Hengchang, YIN Kuibo, XIE Xiao, et al. Ultrahigh humidity sensitivity of graphene oxide[J]. Scientific Reports, 2013, 3(1): 2714.
[38] PENG Yue, LI Junhua. Ammonia adsorption on graphene and graphene oxide: a first-principles study[J]. Frontiers of Environmental Science & Engineering, 2013, 7(3): 403-411.
[39] LIPATOV A, VAREZHNIKOV A, WILSON P, et al. Highly selective gas sensor arrays based on thermally reduced graphene oxide[J]. Nanoscale, 2013, 5(12): 5426-5434.
[40] LEE H K, LEE J, CHOI N J, et al. Efficient reducing method of graphene oxide for gas sensor applications[J]. Procedia Engineering, 2011, 25(1): 892-895.
[41] HU Nantao, WANG Yanyan, CHAI Jing, et al. Gas sensor based on p-phenylenediamine reduced graphene oxide[J]. Sensors and Actuators B: Chemical, 2012, 163(3): 107-114.
[42] GHOSH R, MIDYA A, SANTRA S, et al. Chemically reduced graphene oxide for ammonia detection at room temperature[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7599-7603.
[43] LI Weiwei, GENG Xiumei, GUO Yufeng, et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection[J]. ACS Nano, 2011, 5(9): 6955-5961.
[44] TRAN Q T, HOA H T M, YOO D H, et al. Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature[J]. Sensors and Actuators B: Chemical, 2014, 194(4): 45-50.
[45] MAO Shun, CUI Shunmao, LU Ganhua, et al. Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals[J]. Journal of Materials Chemistry, 2012, 22(22): 11009-11013.
[46] HUANG Qingwu, ZENG Dawen, LI Huayao, et al. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites[J]. Nanoscale, 2012, 4(18): 5651-5658.
[47] MISHRA R K, UPADHYAY S B, KUSHWAHA A, et al. SnO2 quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H2 and LPG sensor[J]. Nanoscale, 2015, 7(28): 11971-11979.
[48] AL-MASHAT L, SHIN K, KALANTAR-ZADEH K, et al. Graphene/polyaniline nanocomposite for hydrogen sensing[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16168-16173.
[49] BAI Hua, SHENG Kaixuan, ZHANG Pengfei, et al. Graphene oxide/conducting polymer composite hydrogels[J]. Journal of Materials Chemistry, 2011, 21(46): 18653-18658.
[50] ZHENG Yang, LEE D, KOO H Y, et al. Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing[J]. Carbon, 2015, 81(1): 54-62.
[51] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102-1120.
[52] HE Qiyuan, ZENG Zhiyuan, YIN Zongyou, et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994-2999.
[53] LATE D J, HUANG Y K, LIU B, et al. Sensing behavior of atomically thin-layered MoS2 transistors[J]. ACS Nano, 2013, 7(6): 4879-4891.
[54] PERKINS F K, FRIEDMAN A L, COBAS E, et al. Chemical vapor sensing with monolayer MoS2[J]. Nano Letters, 2013, 13(2): 668-673.
[55] KIM J S, YOO H W, CHOI H O, et al. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2[J]. Nano Letters, 2014, 14(10): 5941-5947.
[56] KURU C, CHOI C, KARGAR A, et al. MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen[J]. Advanced Science, 2015, 2(4): 1500004.
[57] CUI Shumao, WEN Zhenhai, HUANG Xingkang, et al. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air[J]. Small, 2015, 11(19): 2305-2313.
[58] SHAW J C, ZHOU Hailong, CHEN Yu, et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets[J]. Nano Research, 2014, 7(4): 511-517.
[59] YANG Yong, WANG Shitong, ZHANG Jingchao, et al. Nanosheet-assembled MoSe2 and S-doped MoSe2-x nanostructures for superior lithium storage properties and hydrogen evolution reactions[J]. Inorganic Chemistry Frontiers, 2015, 2(10): 931-937.
[60] LATE D J, DONEUX T, BOUGOUMA M. Single-layer MoSe2 based NH3 gas sensor[J]. Applied Physics Letters, 2014, 105(23): 233103.
[61] HUO Nengjie, YANG Shengxue, WEI Zhongming, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes[J]. Scientific Reports, 2014, 4(1): 5209.
[62] O’BRIEN M, LEE K, MORRISH R, et al. Plasma assisted synthesis of WS2 for gas sensing applications[J]. Chemical Physics Letters, 2014, 615(1): 6-10.
[63] 金旭, 汤立红, 宁平,等. 黑磷烯制备与应用研究进展[J]. 材料导报, 2016, 30(11): 149-155.
JIN Xu, TANG Lihong, NING Ping, et al. Reaearch progress on fabrication and application of phosphorene[J]. Materials Review, 2016, 30(11): 149-155.(in Chinese)
[64] KOU L, FRAUENHEIM T, CHEN C. Phosphorene as a superior gas sensor: selective adsorption and distinct I-V response[J]. Journal of Physical Chemistry Letters, 2014, 5(15): 2675-2681.
[65] CHO S Y, LEE Y, KOH H J, et al. Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene[J]. Advanced Materials, 2016, 28(32): 7020-7028.
[66] ABBAS A N, LIU Bilu, CHEN Liang, et al. Black phosphorus gas sensors[J]. ACS Nano, 2015, 9(5): 5618-5624.
[67] MAYORGA-MARTINEZ C C, SOFER Z, PUMERA M. Layered black phosphorus as a selective vapor sensor[J]. Angewandte Chemie International Edition, 2015, 127(48): 14525-14528.
[68] YASAEI P, BEHRANGINIA A, FOROOZAN T, et al. Stable and selective humidity sensing using stacked black phosphorus flakes[J]. ACS Nano, 2015, 9(10): 9898-9905.

相似文献/References:

[1]丁森旭,冉宗信,孙晓霜,等.修复多环芳烃污染地块的土壤氧化剂需求量[J].深圳大学学报理工版,2023,40(1):48.[doi:10.3724/SP.J.1249.2023.01048]
 DING Senxu,RAN Zongxin,SUN Xiaoshuang,et al.Soil oxidant demand for remediation of PAHs contaminated plots[J].Journal of Shenzhen University Science and Engineering,2023,40(3):48.[doi:10.3724/SP.J.1249.2023.01048]

备注/Memo

备注/Memo:
Received:2017-11-06;Accepted:2018-03-10
Foundation:National Natural Science Foundation of China(61435010, 61575089, 61704112); Natural Science Foundation of Guangdong Province (2016A030310048); China Postdoctoral Science Foundation (2016M592530); Student Innovation Development Foundation of Shenzhen University (PIDFP-ZR2017023)
Corresponding author:Professor ZHANG Han. E-mail: hzhang@szu.edu.cn
Professor LUO Shaojuan. E-mail: kesjluo@connect.ust.hk
Citation:ZHANG Han, ZOU Jifei,LUO Shaojuan, et al. Research progress of gas sensors based on two-dimensional materials[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(3): 221-233.(in Chinese)
基金项目:国家自然科学基金资助项目(61435010,61575089,61704112);广东省自然科学基金资助项目(2016A030310048);中国博士后基金资助项目(2016M592530);深圳大学研究生创新发展基金资助项目 (PIDFP-ZR2017023)
作者简介:张晗(1984—),男,深圳大学特聘教授、博士生导师、国家优秀青年科学基金获得者、中组部青年千人计划获得者.研究方向:光纤激光器、非线性光学、新型二维材料的光电特性及生物医学.E-mail:hzhang@szu.edu.cn
引文:张晗,邹吉菲,罗劭娟,等. 基于二维材料气体传感器的研究[J]. 深圳大学学报理工版,2018,35(3):221-233.
更新日期/Last Update: 2018-04-28