参考文献/References:
[1] WAGNER T, HAFFER S, WEINBERGER C, et al. Mesoporous materials as gas sensors[J]. Chemical Society Reviews, 2013, 42(9): 4036-4053.
[2] LI C, BAI H, SHI G. Conducting polymer nanomaterials: electrosynthesis and applications[J]. Chemical Society Reviews, 2009, 38(8): 2397-2409.
[3] KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2): 1105-1125.
[4] SU Shao, WU Wenhe, GAO Jimin, et al. Nanomaterials-based sensors for applications in environmental monitoring[J]. Journal of Materials Chemistry, 2012, 22(35): 18101-18110.
[5] SUN Yufeng, LIU Shaobo, MENG Fanli, et al. Metal oxide nanostructures and their gas sensing properties: a review[J]. Sensors, 2012, 12(3): 2610-2631.
[6] FINE G F, CAVANAGH L M, AFONJA A, et al. Metal oxide semi-conductor gas sensors in environmental monitoring[J]. Sensors, 2010, 10(6): 5469-5502.
[7] SCHWIERZ F, PEZOLDT J, GRANZNER R. Two-dimensional materials and their prospects in transistor electronics[J]. Nanoscale, 2015, 7(18): 8261-8283.
[8] ZHOU Xing, GAN Lin, TIAN Wenming, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors[J]. Advanced Materials, 2015, 27(48): 8035-8041.
[9] SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.
[10] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[11] FOWLER J D, ALLEN M J, TUNG V C, et al. Practical chemical sensors from chemically derived graphene[J]. ACS Nano, 2009, 3(2): 301-306.
[12] CHUNG M G, KIM D H, SEO D K, et al. Flexible hydrogen sensors using graphene with palladium nanoparticle decoration[J]. Sensors and Actuators B: Chemical, 2012, 169(9): 387-392.
[13] KIRIYA D, TOSUN M, ZHAO P, et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen[J]. Journal of the American Chemical Society, 2014, 136(22): 7853-7856.
[14] TONGAY S, ZHOU Jian, ATACA C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating[J]. Nano Letters, 2013, 13(6): 2831-2836.
[15] ARIGA K, VINU A, JI Qingmin, et al. A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase[J]. Angewandte Chemie International Edition, 2008, 47(38): 7254-7257.
[16] LI Zhen, LU Jun, LI Shangde, et al. Orderly ultrathin films based on perylene/poly(N-vinyl carbazole) assembled with layered double hydroxide nanosheets: 2D fluorescence resonance energy transfer and reversible fluorescence response for volatile organic compounds[J]. Advanced Materials, 2012, 24(45): 6053-6057.
[17] ZHU Yanwu, MURALI S, CAI Weiwei, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924.
[18] SUN Yongfu, GAO Shan, LEI Fengcai, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis[J]. Chemical Society Reviews, 2015, 44(3): 623-636.
[19] YANG Guohai, ZHU Chengzhou, DU Dan, et al. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine[J]. Nanoscale, 2015, 7(34): 14217-14231.
[20] LIU Biliu, CHEN Liang, LIU Gang, et al. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors[J]. ACS Nano, 2014, 8(5): 5304-5314.
[21] DUA V, SURWADE S P, AMMU S, et al. All-organic vapor sensor using inkjet-printed reduced graphene oxide[J]. Angewandte Chemie International Edition, 2010, 49(12): 2154-2157.
[22] ROBINSON J T, PERKINS F K, SNOW E S, et al. Reduced graphene oxide molecular sensors[J]. Nano Letters, 2008, 8(10): 3137-3140.
[23] EISELE I, DOLL T, BURGMAIR M. Low power gas detection with FET sensors[J]. Sensors and Actuators B: Chemical, 2001, 78(1): 19-25.
[24] ZHANG Zhangyuan, ZOU Xuming, XU Lei, et al. Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor[J]. Nanoscale, 2015, 7(22): 10078-10084.
[25] LU G, PARK S, YU K, et al. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations[J]. ACS Nano, 2011, 5(2): 1154-1164.
[26] ARSAT R, BREEDON M, SHAFIEI M, et al. Graphene-like nano-sheets for surface acoustic wave gas sensor applications[J]. Chemical Physics Letters, 2009, 467(4): 344-347.
[27] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[28] YUAN Wenjing, SHI Gaoquan. Graphene-based gas sensors[J]. Journal of Materials Chemistry A, 2013, 1(35): 10078-10091.
[29] HE Qiyuan, WU Shixin, YIN Zongyou, et al. Graphene-based electronic sensors[J]. Chemical Science, 2012, 3(6): 1764-1772.
[30] 孙丰强, 许适溥. 石墨烯材料在气体传感器中的应用[J]. 华南师范大学学报自然科学版, 2013, 45(6): 92-98.
SUN Fengqiang, XU Shifu. The application of graphene in gas sensor[J]. Journal of South China Normal University Natural Science Edition, 2013, 45(6): 92-98.(in Chinese)
[31] RUMYANTSEV S, LIU Guanxiong, SHUR M S, et al. Selective gas sensing with a single pristine graphene transistor[J]. Nano Letters, 2012, 12(5): 2294-2298.
[32] KIM Y H, SANG J K, KIM Y J, et al. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending[J]. ACS Nano, 2015, 9(10): 10453-10460.
[33] KALITA G, WAKITA K, UMENO M. Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application[J]. Rsc Advances, 2012, 2(7): 2815-2820.
[34] SUK J W, KITT A, MAGNUSON C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5(9): 6916-6924.
[35] GAUTAM M, JAYATISSA A H. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles[J]. Solid State Electronics, 2012, 78(1): 159-165.
[36] PREZIOSO S, PERROZZI F, GIANCATERINI L, et al. Graphene oxide as a practical solution to high sensitivity gas sensing[J]. The Journal of Physical Chemistry C, 2013, 117(20): 10683-10690.
[37] BI Hengchang, YIN Kuibo, XIE Xiao, et al. Ultrahigh humidity sensitivity of graphene oxide[J]. Scientific Reports, 2013, 3(1): 2714.
[38] PENG Yue, LI Junhua. Ammonia adsorption on graphene and graphene oxide: a first-principles study[J]. Frontiers of Environmental Science & Engineering, 2013, 7(3): 403-411.
[39] LIPATOV A, VAREZHNIKOV A, WILSON P, et al. Highly selective gas sensor arrays based on thermally reduced graphene oxide[J]. Nanoscale, 2013, 5(12): 5426-5434.
[40] LEE H K, LEE J, CHOI N J, et al. Efficient reducing method of graphene oxide for gas sensor applications[J]. Procedia Engineering, 2011, 25(1): 892-895.
[41] HU Nantao, WANG Yanyan, CHAI Jing, et al. Gas sensor based on p-phenylenediamine reduced graphene oxide[J]. Sensors and Actuators B: Chemical, 2012, 163(3): 107-114.
[42] GHOSH R, MIDYA A, SANTRA S, et al. Chemically reduced graphene oxide for ammonia detection at room temperature[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7599-7603.
[43] LI Weiwei, GENG Xiumei, GUO Yufeng, et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection[J]. ACS Nano, 2011, 5(9): 6955-5961.
[44] TRAN Q T, HOA H T M, YOO D H, et al. Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature[J]. Sensors and Actuators B: Chemical, 2014, 194(4): 45-50.
[45] MAO Shun, CUI Shunmao, LU Ganhua, et al. Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals[J]. Journal of Materials Chemistry, 2012, 22(22): 11009-11013.
[46] HUANG Qingwu, ZENG Dawen, LI Huayao, et al. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites[J]. Nanoscale, 2012, 4(18): 5651-5658.
[47] MISHRA R K, UPADHYAY S B, KUSHWAHA A, et al. SnO2 quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H2 and LPG sensor[J]. Nanoscale, 2015, 7(28): 11971-11979.
[48] AL-MASHAT L, SHIN K, KALANTAR-ZADEH K, et al. Graphene/polyaniline nanocomposite for hydrogen sensing[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16168-16173.
[49] BAI Hua, SHENG Kaixuan, ZHANG Pengfei, et al. Graphene oxide/conducting polymer composite hydrogels[J]. Journal of Materials Chemistry, 2011, 21(46): 18653-18658.
[50] ZHENG Yang, LEE D, KOO H Y, et al. Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing[J]. Carbon, 2015, 81(1): 54-62.
[51] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102-1120.
[52] HE Qiyuan, ZENG Zhiyuan, YIN Zongyou, et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994-2999.
[53] LATE D J, HUANG Y K, LIU B, et al. Sensing behavior of atomically thin-layered MoS2 transistors[J]. ACS Nano, 2013, 7(6): 4879-4891.
[54] PERKINS F K, FRIEDMAN A L, COBAS E, et al. Chemical vapor sensing with monolayer MoS2[J]. Nano Letters, 2013, 13(2): 668-673.
[55] KIM J S, YOO H W, CHOI H O, et al. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2[J]. Nano Letters, 2014, 14(10): 5941-5947.
[56] KURU C, CHOI C, KARGAR A, et al. MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen[J]. Advanced Science, 2015, 2(4): 1500004.
[57] CUI Shumao, WEN Zhenhai, HUANG Xingkang, et al. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air[J]. Small, 2015, 11(19): 2305-2313.
[58] SHAW J C, ZHOU Hailong, CHEN Yu, et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets[J]. Nano Research, 2014, 7(4): 511-517.
[59] YANG Yong, WANG Shitong, ZHANG Jingchao, et al. Nanosheet-assembled MoSe2 and S-doped MoSe2-x nanostructures for superior lithium storage properties and hydrogen evolution reactions[J]. Inorganic Chemistry Frontiers, 2015, 2(10): 931-937.
[60] LATE D J, DONEUX T, BOUGOUMA M. Single-layer MoSe2 based NH3 gas sensor[J]. Applied Physics Letters, 2014, 105(23): 233103.
[61] HUO Nengjie, YANG Shengxue, WEI Zhongming, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes[J]. Scientific Reports, 2014, 4(1): 5209.
[62] O’BRIEN M, LEE K, MORRISH R, et al. Plasma assisted synthesis of WS2 for gas sensing applications[J]. Chemical Physics Letters, 2014, 615(1): 6-10.
[63] 金旭, 汤立红, 宁平,等. 黑磷烯制备与应用研究进展[J]. 材料导报, 2016, 30(11): 149-155.
JIN Xu, TANG Lihong, NING Ping, et al. Reaearch progress on fabrication and application of phosphorene[J]. Materials Review, 2016, 30(11): 149-155.(in Chinese)
[64] KOU L, FRAUENHEIM T, CHEN C. Phosphorene as a superior gas sensor: selective adsorption and distinct I-V response[J]. Journal of Physical Chemistry Letters, 2014, 5(15): 2675-2681.
[65] CHO S Y, LEE Y, KOH H J, et al. Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene[J]. Advanced Materials, 2016, 28(32): 7020-7028.
[66] ABBAS A N, LIU Bilu, CHEN Liang, et al. Black phosphorus gas sensors[J]. ACS Nano, 2015, 9(5): 5618-5624.
[67] MAYORGA-MARTINEZ C C, SOFER Z, PUMERA M. Layered black phosphorus as a selective vapor sensor[J]. Angewandte Chemie International Edition, 2015, 127(48): 14525-14528.
[68] YASAEI P, BEHRANGINIA A, FOROOZAN T, et al. Stable and selective humidity sensing using stacked black phosphorus flakes[J]. ACS Nano, 2015, 9(10): 9898-9905.