WANG Wei,YU Hongyang,HUANG Tengbo,et al.JAG’s regulation in controlling the chlorophyll a/chlorophyll b ratio in Arabidopsis floral organ[J].Journal of Shenzhen University Science and Engineering,2018,35(1):8-14.[doi:10.3724/SP.J.1249.2018.01008]





JAG’s regulation in controlling the chlorophyll a/chlorophyll b ratio in Arabidopsis floral organ
1 )深圳大学生命与海洋科学学院,广东省植物表观遗传学重点实验室,广东深圳518060
2) 深圳大学光电工程学院,光电子器件与系统教育部/广东省重点实验室,广东深圳518060
3) 深圳市公园管理中心,广东深圳 518040
WANG Wei1 YU Hongyang12 HUANG Tengbo1 HE Henghui3 and ZHANG Yongxia1
1) Guangdong Provincial Key Laboratory for Plant Epigenetic, College of Life and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
3) Shenzhen Park Service, Shenzhen 518040, Guangdong Province, P.R.China
plant physiology chloroplast chlorophyll Arabidopsis thaliana JAGGED transcriptional factor network
Q 945.4
拟南芥C2H2锌指家族转录因子JAGGED(JAG)基因是植物发育过程中调控细胞分裂和分化的一个关键基因.为更详细了解JAG基因在植物发育调控中的功能,解析其下游的调控网络,通过对JAG基因诱导过表达植物的花器官进行分析,发现除在花器官形态上表现出差异外,JAG基因还可促进叶绿素a(chlorophyll a, Chla)转变为叶绿素b(chlorophyll b, Chlb).进一步研究发现,调控从Chla向Chlb转化的关键基因CAO的转录水平受JAG转录因子的间接作用会显著上调,从而使花器官中Chla和Chlb比例改变.对比分析JAG下游基因库转录组数据和ChIPseq结果,找到了23个受JAG直接作用的叶绿体发育相关基因.研究结果表明,JAG基因对植物花器官中叶绿素的生成有重要作用,可通过间接调控CAO基因的表达,控制Chla和Chlb的比例.该工作可为研究JAG基因调控植物器官发育及功能的基因网络提供新启示.
JAGGED (JAG), a C2H2 zinc finger transcription factor, is a key regulator of cell division and differentiation in Arabidopsis. Studies on dissecting its complex downstream regulatory network have attracted plant biologists for many years. To further dissect the role of JAG and analyze the downstream regulation network, we investigate the floral phenotypes of transgenic plants overexpressing an inducible form of JAG and observe the strong morphological defects in flower development when JAG is induced. Furthermore, we also detect a significant change of the chlorophyll a/b ratio in the JAG-overexpressing floral tissues. Subsequent gene expression assay shows that this phenotype is likely attributable to the increased level of CAO, a key factor involved in chlorophyll a to b transition. In the JAG overexpression plant, this regulation of CAO by JAG appears to be indirect. In addition, we also analyze the published micro-array and ChIPseq data that have been used for identifying the target genes of JAG, and reveal that 23 JAG direct targets are associated with chloroplast development. These results suggest the potential important role of JAG in controlling chlorophyll biogenesis and will hopefully provide new insights in understanding the regulatory mechanisms of JAG in plant organ development and function.


[1] DINNENY J R, YADEGARI R, FISCHER R L, et al. The role of JAGGED in shaping lateral organs[J]. Development, 2004,131(5):1101-1110.
[2] OHNO C K, MEYEROWITZ E M. The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development[J]. Development, 2004, 131(5): 1111-1122.
[3] SAURET-GETO S, SCHIESSL K, BANGHAM A, et al. JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field[J]. PLOS Biology,2013,11(4):e1001550.
[4] SCHIESSL K M, SABLOWSKI R. Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(7):2830-2835.
[5] SCHIESSL K, KAUSIKA S, SOUTHAM P, et al. JAGGED controls growth anisotropy and coordination between cell size and cell cycle during plant organogenesis[J]. Current Biology: CB,2012,22(19):1739-1746.
[6] BOLLIVAR D W. Recent advances in chlorophyll biosynthesis[J]. Photosynthesis Research,2006,90(2):173-194.
[7] MASUDA T, FUJITA Y. Regulation and evolution of chlorophyll metabolism[J]. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology,2008,7(10):1131-1149.
[8] CORTLEVEN A, SCHMLLING T. Regulation of chloroplast development and function by cytokinin[J]. Journal of Experimental Botany,2015,66(16):4999-5013.
[9] TANAKA A, ITO H, TANAKA R, et al. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(21):12719-12723.
[10] TANAKA R, KOSHINO Y, SAWA S, et al. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem Ⅱ in Arabidopsis thaliana[J]. The Plant Journal: for Cell and Molecular Biology, 2001, 26(4): 365-373.
[11] TYUTEREVA E V, VOITSEKHOVSKAJA O V. On the role of chlorophyll b in ontogenetic adaptations of plants[J]. Biology Bulletin Reviews,2014,4(6):507-514.
[12] HIRASHIMA M, SATOH S, TANAKA R, et al. Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis[J]. The Journal of Biological Chemistry,2006,281(22):15385-15393.
[13] NAKAGAWARA E, SAKURABA Y, YAMASATO A, et al. Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase[J]. The Plant Journal: for Cell and Molecular Biology, 2007, 49(5): 800-809.
[14] SHEN G, YAN Juqiang, PASAPULA V, et al. The chloroplast protease subunit ClpP4 is a substrate of the E3 ligase AtCHIP and plays an important role in chloroplast function[J]. The Plant Journal: for Cell and Molecular Biology,2007,49(2):228-237.
[15] ZHANG Jinheng, HAN Chao, LIU Zhiheng. Absorption spectrum estimating rice chlorophyll concentration: preliminary investigations[J]. Journal of Plant Breeding & Crop Science, 2009, 1 (1) :223-229.
[16] WATERS M T, LANGDALE J A. GLK transcription factors regulate chloroplast development in a cell-autonomous manner[J].Plant Journal for Cell & Molecular Biology, 2008, 56(3):432-444.
[17] NAKAMURA H, MURAMATSU M, HAKATA M, et al. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells[J]. Plant & Cell Physiology,2009,50(11):1933-1949.
[18] 岳路明,宋剑波,徐晓峰,等.拟南芥AGO基因家族分析及盐胁迫下的表达验证[J].深圳大学学报理工版,2017, 34(4):352-357.
YUE Luming, SONG Jianbo, XU Xiaofeng,et al. Bioinformatical and experimental analysis of AGO genes in response to salt stress[J]. Journal of Shenzhen University Science and Engineering ,2017,34(4):352-357.(in Chinese)
[19] 马轩,李盛本,莫蓓莘,等.拟南芥ago1-27突变体的RNA-seq分析[J].深圳大学学报理工版,2017, 34(1):27-32.
MA Xuan, LI Chengben, MO Beishen,et al.RNA-seq analysis on Arabidopsis ago1-27 mutant[J].Journal of Shenzhen University Science and Engineering,2017,34(1):27-32.(in Chinese)
[20] 莫蓓莘.RNA在植物细胞中的定位及其研究进展[J].深圳大学学报理工版,2011, 28(3):230-236.
MO Beixin.RNA localization in plant cells and advances of the research[J].Journal of Shenzhen University Science and Engineering,2011,28(3):230-236.(in Chinese)
[21] 徐冉,侯和胜,佟少明.藻类叶绿素a/叶绿素b型捕光蛋白复合体结构与功能的研究进展[J].天津农业科学,2016, 22(2):31-34.
XU Ran, HOU Hesheng, TONG Shaoming. Research progress of the Chl a/Chl b type light-harvesting complex protein in algae[J]. Tianjin Agricultural Sciences,2016,22(2):31-34.(in Chinese)
[22] 丁跃,吴刚,郭长奎.植物叶绿素降解机制研究进展[J].生物技术通报,2016, 32(11):1-9.
DING Yue, WU Gang, GUO Changkui. Research advance on chlorophyll degradation in plants[J]. Biotechnology Bulletin,2016,32(11):1-9.(in Chinese)
[23] 姚嘉龙,郭蓓,谢皓.叶绿素合成关键酶基因表达的半定量RT-PCR分析[J]. 基因组学与应用生物学,2015,34(3):593-598.
YAO Jialong, GUO Bei, XIE Hao. Expression analysis of key enzyme gene involved in chlorophyll biosynthesis by semi-quantitative RT-PCR[J]. Genomics and Applied Biology, 2015, 34(3): 593-598.(in Chinese)
[24] 史典义,刘忠香,金危危.植物叶绿素合成、分解代谢及信号调控[J].遗传,2009, 31(7):698-704.
SHI Dianyi, LIU Zhongxiang, JIN Weiwei. Biosynthesis, catabolism and related signal regulations of plant chlorophyll[J]. Hereditas,2009,31(7):698-704.(in Chinese)
[25] 王平荣,张帆涛,高家旭,等.高等植物叶绿素生物合成的研究进展[J].西北植物学报,2009, 29(3):629-636.
WANG Pingrong, ZHANG Fantao, GAO Jiaxu,et al. An overview of chlorophyll biosynthesis in higher plants[J]. Acta Botanica Boreali-Occidentalia Sinica,2009,29(3):629-636.(in Chinese)


 Yue Luming,Song Jianbo,Xu Xiaofeng,et al.Bioinformatical and experimental analysis of AGO genes in response to salt stress[J].Journal of Shenzhen University Science and Engineering,2017,34(1):352.[doi:10.3724/SP.J.1249.2017.04352]


Foundation:China Postdoctoral Science Foundation Funded Project (2016M592524); Natural Science Startup Foundation of Shenzhen University (2016101)
Corresponding author:Professor ZHANG Yongxia. E-mail: zyx@szu.edu.cn
Citation:WANG Wei, YU Hongyang, HUANG Tengbo, et al. JAG’s regulation in controlling the chlorophyll a/chlorophyll b ratio in Arabidopsis floral organ[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(1): 8-14.(in Chinese)
基金项目:中国博士后科学基金资助项目 (2016M592524);广东省学位与研究生教育改革研究资助项目(2013JGXM-MS31);深圳市城管局科研基金资助项目(201210);深圳大学自然科学科研启动基金资助项目(2016101)
作者简介:王伟(1992—),男,深圳大学硕士研究生.研究方向:植物学与分子生物学. E-mail:wangweiszuniv@163.com
余泓漾(1984—),男,深圳大学博士后研究人员.研究方向:植物学与分子生物学. E-mail:hongyangyu@szu.edu.cn
引文:王伟,余泓漾,黄腾波,等. 拟南芥JAG基因调控花器官中叶绿素a与b比例[J]. 深圳大学学报理工版,2018,35(1):8-14.
更新日期/Last Update: 2017-12-22