[1]陈星宇,周展,黄俊文,等.基于关键词挖掘的客户细分方法[J].深圳大学学报理工版,2017,34(3):300-305.[doi:10.3724/SP.J.1249.2017.03300]
 Chen Xingyu,Zhou Zhan,Huang Junwen,et al.A keyword-based mining method for customer segmentation[J].Journal of Shenzhen University Science and Engineering,2017,34(3):300-305.[doi:10.3724/SP.J.1249.2017.03300]
点击复制

基于关键词挖掘的客户细分方法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年第3期
页码:
300-305
栏目:
电子与信息科学
出版日期:
2017-05-30

文章信息/Info

Title:
A keyword-based mining method for customer segmentation
文章编号:
201703012
作者:
陈星宇1周展1黄俊文1陶达2
1) 深圳大学管理学院,广东深圳 518060
2) 深圳大学人因工程研究所,广东深圳 518060
Author(s):
Chen Xingyu1 Zhou Zhan1 Huang Junwen1 and Tao Da2
1) College of Management, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Institute of Human Factors and Ergonomics, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
人工智能自然语言处理知识工程客户细分关键词挖掘客户特征数据挖掘
Keywords:
artificial intelligence natural language processing knowledge engineering customer segmentation keyword mining customer characteristics data mining
分类号:
TP 311
DOI:
10.3724/SP.J.1249.2017.03300
文献标志码:
A
摘要:
提出一种基于关键词的数据挖掘方法对客户群进行细分,采用自然语义处理的方法从原始客户信息文本中提取客户特征关键词.再通过人工标记一些与内在特征维度相关的关键词,基于这些关键词找到特征客户.最后以特征客户作为训练集,获得更多关于某个维度内客户特征的关键词,再进行新一轮的客户细分.经此模式学习过程,得到基于内在特征维度的客户细分群体.通过与采用随机选择特征关键词的基准化方法进行自动客户细分结果对比,发现采用基于关键词数据挖掘的自动客户细分结果得到的准确度更高,结果更稳健.
Abstract:
We propose a novel customer segmentation method using keyword-based data mining approach. First, keywords about customer characteristics from original customer information are extracted by natural semantic processing. Then, keywords related to intrinsic characteristics are tagged. Based on the keywords, customers with the specific characteristics are identified. Finally, we use the identified customers as the training samples to obtain more keywords about the customer characteristics, and conduct a new round of customer segmentation. After the learning process, customer segmentation groups based on intrinsic characteristics are obtained. Compared with the benchmarking method of random selection of feature keywords for customer segmentation, the feasibility and validity of the proposed method are verified by a case study where a high level of accuracy rate and robustness is observed in the customer segmentation results.

参考文献/References:

[1] 王扶东,马玉芳.基于数据挖掘的客户细分方法的研究[J].计算机工程与应用,2011,47(4): 215-218.
Wang Fudong, Ma Yufang. Research of method for customer segment based on data mining[J]. Computer Engineering and Application, 2011, 47(4): 215-218.(in Chinese)
[2] Foedermayr E K, Diamantopoulos A. Market segmentation in practice: review of empirical studies, methodological assessment, and agenda for future research[J]. Journal of Strategic Marketing, 2008, 16(3): 223-265.
[3] Saliba S J, Turner R E. Marketing management: analysis, planning, implementation and control[M]. 8th ed. Philip K, Ronald E T. Scarborough, Canadian: Prentice-Hall, 1995.
[4] Tsiptsis K, Chorianopoulos A. Data mining techniques in CRM: inside customer segmentation[M]. Hoboken, USA: John Wiley & Sons, 2011.
[5] Liang Daolei, Chen Haibo. An online mall CRM model based on data mining[C]// Quantitative Logic and Soft Computing. Hangzhou, China: Springer International Publishing, 2017, 510: 599-606.
[6] Chan K Y, Kwong C K, Hu B Q. Market segmentation and ideal point identification for new product design using fuzzy data compression and fuzzy clustering methods[J]. Applied Soft Computing, 2012, 12(4): 1371-1378.
[7] Green P E, Carroll J D, Goldberg S M. A general approach to product design optimization via conjoint analysis[J]. The Journal of Marketing, 1981, 45(3): 17-37.
[8] Butler J C, Dyer J S, Jia Jianmin, et al. Enabling e-transactions with multi-attribute preference models[J]. European Journal of Operational Research, 2008, 186(2): 748-765.
[9] Rojanavasu P, Dam H H, Abbass H A, et al. A self-organized, distributed, and adaptive rule-based induction system[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 446-459.
[10] Brusco M J, Cradit J D, Stahl S. A simulated annealing heuristic for a bicriterion partitioning problem in market segmentation[J]. Journal of Marketing Research, 2002, 39(1): 99-109.
[11] Ayoubi M. Customer segmentation based on CLV model and neural network[J]. International Journal of Computer Science Issues, 2016, 13(2): 31.
[12] Liu H-H, Ong C-S. Variable selection in clustering for marketing segmentation using genetic algorithms[J]. Expert Systems with Applications: an international Journal, 2008, 34(1): 502-510.
[13] Lee E-K, Cook D, Klinke S, et al. Projection pursuit for exploratory supervised classification[J]. Journal of Computational and Graphical Statistics, 2012, 14(4): 831-846.
[14] Duda R O, Hart P E. Pattern classification and scene analysis[M]. New York, USA: Wiley, 1973.
[15] Swain P H, Hauska H. The decision tree classifier: design and potential[J]. IEEE Transactions on Geoscience Electronics, 1977, 15(3): 142-147.
[16] Zou K H, Warfield S K, Bharatha A, et al. Statistical validation of image segmentation quality based on a spatial overlap index 1[J]. Academic radiology, 2004, 11(2): 178-189.
[17] Budayan C, Dikmen I, Birgonul M T. Comparing the performance of traditional cluster analysis, self-organizing maps and fuzzy c-means method for strategic grouping[J]. Expert Systems with Applications, 2009, 36(9): 11772-11781.
[18] 袁兵,黄 静, 曾一帆.网络评论语言的抽象性对消费者品牌态度与购买意愿的影响——一项基于语言类别模型 (LCM) 的实证研究[J].营销科学学报,2013(3):17-30.
Yuan Bing, Huang Jing, Zeng Yifan. The effect of language abstraction in online reviews on consumer’s brand attitude and buying intention: an empirical research based on the linguistic category model (LCM)[J]. Journal of Marketing Science, 2013, 9(3): 17-30.(in Chinese)
[19] 陈星宇,黄俊文,周展,等. 基于本体论的大数据下用户需求表征[J]. 深圳大学学报理工版,2017,34(2):173-180.
Chen Xingyu, Huang Junwen, Zhou Zhan, et al. Ontology-based user requirements representation in the context of big data[J]. Journal of Shenzhen University Science and Engineering, 2017,34(2): 173-180.(in Chinese)
[20] 张润,王永滨.机器学习及其算法和发展研究[J].中国传媒大学学报自然科学版,2016,23(2):10-18.
Zhang Run, Wang Yongbin. Research on machine learning with algorithms and development[J]. Journal of Communication University of China Science and Technology, 2016, 23(2): 10-18.(in Chinese)
[21] Davies J, Sure Y, Grobelnik M, et al. Automated knowledge discovery in advanced knowledge management[J]. Journal of Knowledge Management, 2005, 9(5):132-149.
[22] Lüthje C. Characteristics of innovating users in a consumer goods field: an empirical study of sport-related product consumers[J]. Technovation, 2004, 24(9): 683-695.

相似文献/References:

[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
 PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(3):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
 LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(3):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
 CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(3):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
 ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(3):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(1):43.[doi:10.3724/SP.J.1249.2014.01043]
 Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(3):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
 Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
 Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(3):367.[doi:10.3724/SP.J.1249.2014.04367]
[8]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
 Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(3):196.[doi:10.3724/SP.J.1249.2015.02000]
[9]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
 Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
[10]王守觉,鲁华祥,陈向东,等.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报理工版,1997,14(1):8.
 Wang Shoujue,Lu Huaxiang,Chen Xiangdong and Zeng Yujuan.On the Hardware for Artificial Neural Networks and Neurocomputer[J].Journal of Shenzhen University Science and Engineering,1997,14(3):8.

备注/Memo

备注/Memo:
Received:2016-11-30;Accepted:2017-03-18
Foundation:National Natural Science Foundation of China (71502111)
Corresponding author:Lecturer Tao Da. E-mail: taoda@szu.edu.cn
Citation:Chen Xingyu, Zhou Zhan, Huang Junwen, et al. A keyword-based mining method for customer segmentation[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(3): 300-305.(in Chinese)
基金项目:国家自然科学基金资助项目(71502111)
作者简介:陈星宇 (1983—),女,深圳大学讲师、博士.研究方向:新产品体验及客户需求管理.E-mail:celine@szu.edu.cn
引文:陈星宇,周展,黄俊文,等.基于关键词挖掘的客户细分方法[J]. 深圳大学学报理工版,2017,34(3):300-305.
更新日期/Last Update: 2017-04-20