参考文献/References:
[1] Lustig M, Donoho D, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
[2] Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[3] Wang Yanhua, Ying L. Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary[J]. IEEE transactions on Biomedical Engineering, 2014, 61(4): 1109-1120.
[4] Caballero J, Price A N, Rueckert D, et al. Dictionary learning and time sparsity for dynamic MR data reconstruction[J]. IEEE Transactions on Medical Imaging, 2014, 33(4): 979-994
[5] Ma Shiqian, Yin Wotao, Zhang Yin, et al. An efficient algorithm for compressed MR imaging using total variation and wavelets[C]// IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008:1-8.
[6] Wong A, Mishra A, Fieguth P, et al. Sparse reconstruction of breast MRI using homotopic L0 minimization in a regional sparsified domain[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(3): 743-752.
[7] Lingala S G, Jacob M. Blind compressive sensing dynamic MRI[J]. IEEE Transactions on Medical Imaging, 2013, 32(6): 1132-1145.
[8] Zhang Y, Dong Z, Wang G J S. An improved reconstruction method for CS-MRI based on exponential wavelet transform and iterative shrinkage/thresholding algorithm[J]. Journal of Electromagnetic Waves & Applications, 2014, 28(18): 2327-2338.
[9] Selesnick I W, Chen P Y. Total variation denoising with overlapping group sparsity[C]// IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, Canada: IEEE, 2013: 5696-5700.
[10] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenom, 1992, 60(1/2/3/4): 259-268.
[11] Abraham A, Dohmatob E, Thirion B, et al. Extracting brain regions from rest fMRI with total-variation constrained dictionary learning[J]. Medical Image Computing and Computer-Assisted Intervention, 2013, 16(2): 607-615.
[12] Qu Xiaobo, Guo Di, Ning Bende, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977.
[13] Guerquin-Kern M, Haberlin M, Pruessmann K, et al. A fast wavelet-based reconstruction method for magnetic resonance imaging[J]. IEEE Transactions on Medical Imaging, 2011, 30(9): 1649-1660.
[14] Kim Y, Nadar M S, Bilgin A. Wavelet-based compressed sensing using a Gaussian scale mixture model[J]. IEEE Transactions on Image Processing, 2012, 21(6): 3102-3108.
[15] Qiu Chenlu, Lu Wei, Vaswani N. Real-time dynamic MR image reconstruction using Kalman filtered compressed sensing[C]// IEEE Internal Conference on Acoustics, Speech and Signal Processing. Taipei, China: IEEE, 2009: 393-396.
[16] Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041.
[17] Liu Qiegen, Wang Shanshan, Yang Kun, et al. Highly undersampled magnetic resonance imaging reconstruction using two-level Bregman method with dictionary updating[J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1290-1301.
[18] Liu Qiegen, Wang Shanshan, Luo Jianhua. A novel predual dictionary learning algorithm[J]. Journal of Visual Communication Image Representation, 2012, 23(1): 182-193.
[19] Candès E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877-905.
[20] Zheng Miao, Bu Jiajun, Chen Chun, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1327-1336.
相似文献/References:
[1]张 敏,阮双琛,杨 珺,等.连续太赫兹波实时透射成像实验研究[J].深圳大学学报理工版,2007,24(4):384.
ZHANG Min,RUAN Shuang-chen,YANG Jun,et al.Experimental study of continuous-wave terahertz radiation real-time transmission imaging[J].Journal of Shenzhen University Science and Engineering,2007,24(2):384.
[2]胡涛,郭宝平,郭轩.基于游程分析轮廓提取算法的改进[J].深圳大学学报理工版,2009,26(4):405.
HU Tao,GUO Bao-ping,and GUO Xuan.An improved run-based boundary extraction algorithm[J].Journal of Shenzhen University Science and Engineering,2009,26(2):405.
[3]胡媛媛,牛夏牧.基于视觉阈值的结构相似度图像质量评价算法[J].深圳大学学报理工版,2010,27(2):185.
HU Yuan-yuan and NIU Xia-mu.Image quality assessment based on human visibility threshold theory and structural similarity[J].Journal of Shenzhen University Science and Engineering,2010,27(2):185.
[4]宋远佳,张炜,杨正伟,等.固体火箭发动机壳体脱黏缺陷的热波检测[J].深圳大学学报理工版,2012,29(No.3(189-282)):252.[doi:10.3724/SP.J.1249.2012.03252]
SONG Yuan-jia,ZHANG Wei,YANG Zheng-wei,et al.Debond defect detection in shell of solid rocket motor by thermal wave nondestructive testing[J].Journal of Shenzhen University Science and Engineering,2012,29(2):252.[doi:10.3724/SP.J.1249.2012.03252]
[5]黄宗福,孙刚,陈曾平. 大视场空间目标光电探测起伏背景抑制算法[J].深圳大学学报理工版,2012,29(No.6(471-580)):471.[doi:10.3724/SP.J.1249.2012.06471]
HUANG Zong-fu,SUN Gang,and CHEN Zeng-ping.A background clutter suppression algorithm for space target detection in wide field-of-view opto-electronic observation[J].Journal of Shenzhen University Science and Engineering,2012,29(2):471.[doi:10.3724/SP.J.1249.2012.06471]
[6]吴庆阳,曾祥军,黄锦辉,等.数字印模口内三维扫描技术研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):60.[doi:10.3724/SP.J.1249.2013.01060]
Wu Qingyang,Zeng Xiangjun,Huang Jinhui,et al.Study on digital impression for intraoral 3D scanning[J].Journal of Shenzhen University Science and Engineering,2013,30(2):60.[doi:10.3724/SP.J.1249.2013.01060]
[7]周山雪,谢国喜.基于多通道图像相关性的改进GRAPPA算法[J].深圳大学学报理工版,2013,30(No.2(111-220)):162.[doi:10.3724/SP.J.1249.2013.02162]
Zhou Shanxue and Xie Guoxi.An improved GRAPPA algorithm based on the correlation between multi-coil images[J].Journal of Shenzhen University Science and Engineering,2013,30(2):162.[doi:10.3724/SP.J.1249.2013.02162]
[8]张敏,权润爱,苏红,等.光泵连续太赫兹波在生物成像中的应用研究(英文)[J].深圳大学学报理工版,2014,31(2):160.[doi:10.3724/SP.J.1249.2014.02160]
Zhang Min,Quan Runai,Su Hong,et al.Investigation of optically pumped continuous terahertz laser in biological imaging[J].Journal of Shenzhen University Science and Engineering,2014,31(2):160.[doi:10.3724/SP.J.1249.2014.02160]
[9]李霞,李富生,陈园琴.基于视觉灵敏度与DCT系数的显著性检测[J].深圳大学学报理工版,2014,31(5):464.[doi:10.3724/SP.J.1249.2014.05464]
Li Xia,Li Fusheng,and Chen Yuanqin.Saliency detection model based on human visual sensitivity and DCT coefficients[J].Journal of Shenzhen University Science and Engineering,2014,31(2):464.[doi:10.3724/SP.J.1249.2014.05464]
[10]李璟,倪东,李胜利,等.超声图像中胎儿头围的自动测量[J].深圳大学学报理工版,2014,31(5):455.[doi:10.3724/SP.J.1249.2014.05455]
Li Jing,Ni Dong,Li Shengli,et al.The automatic ultrasound measurement of fetal head circumference[J].Journal of Shenzhen University Science and Engineering,2014,31(2):455.[doi:10.3724/SP.J.1249.2014.05455]