参考文献/References:
[1] Wang Chuanxi, Wang Yu, Xu Lin, et al. A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging[J]. Small, 2013, 9(3): 413-420.
[2] Xu Qi, Liu Fang, Liu Yuxiang, et al. Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells[J]. Optics Express, 2014, 22(102): 301-310.
[3] Gao Yongkang, Gan Yiaoqiang, Bartoli F J. Breakthroughs in photonics 2013: research highlights on biosensors based on plasmonic nanostructures[J]. IEEE Photonics Journal, 2014, 6(2): 801-805.
[4] Amrollahi R, Hamdy M S, Mul G. Understanding promotion of photocatalytic activity of TiO2 by Au nanoparticle[J]. Journal of Catalysis, 2014, 319(8): 194-199.
[5] Li Jingguo, Zhao Tingting, Chen Tiankai, et al. Engineering noble metal nanomaterials for environmental applications[J]. Nanoscale, 2015, 7(17): 7502-7519.
[6] Lu Kuangda, He Chunbai, Lin Wenbin. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer[J]. Journal of the American Chemical Society, 2014, 136(48): 16712-16715.
[7] Zito G, Rusciano G, Pesce G, et al. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure[J]. Nanoscale, 2015, 7(18): 8593-8606.
[8] Brown C T A, Deckert V, Sergeev A M. Nanobiophotonics: photons that shine their light on the life at the nanoscale[J]. Biophotonics, 2010, 3(10/11): 639-640.
[9] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 2003, 90(2): 027402.
[10] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460(7259): 1110-1112.
[11] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelenth scale[J]. Nature, 2009, 461(7264): 629-632.
[12] Li Zhiyuan, Xia Younan. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering[J]. Nano Letters, 2010, 10(1): 243-249.
[13] Zhang Chao, Chen Baoqin, Li Zhiyuan. Optical origin of subnanometer resolution in tip-enhanced Raman mapping[J]. The Journal of Physical Chemistry C, 2015, 119(21): 11858-11871
[14] Xian Jinhong, Chen Linchun, Niu Hanben, et al. Significant field enhancements in an individual silver nanoparticle near a substrate covered with a gain thin film[J]. Nanoscale, 2014, 6(22): 13994-14001.
[15] Song Jun, Tian Yuliang, Ye Shuai, et al. Characteristic analysis of low threshold plasmonic lasers using Ag nanoparticles with various shapes using photochemical synthesis[J]. Journal of Lightwave Technology, 2015,33(15): 3215-3223.
[16] Song Jun, Ye Shuai, Tian Yuliang, et al. Photochemical grown silver nanodecahedra with precise tuning of plasmonic resonance[J]. Nanoscale, 2015, 7(29): 12706-12712.
[17] Zhu Guiqin, Shi Jiangong, Wang Wanlin. Progress in preparation and applications of silver nano-materials[J]. Science & Technology Review, 2010, 28(22): 112-117.(in Chinese)
朱桂琴,史建公,王万林.银纳米材料制备和应用进展[J].科技导报,2010,28(22):112-117.
[18] Zhang Wanzhong, Qiao Xueliang, Chen Jianguo. Research process on the controlled preparation of silver nanomaterials[J]. Rare Metal Materials and Engineering, 2008, 37(11): 2059-2064.(in Chinese)
张万忠,乔学亮,陈建国.银纳米材料的可控合成研究[J].稀有金属材料与工程,2008,37(11):2059-2064.
[19] Hutter T, Elliott S E, Mahajan S. Interaction of metallic nanoparticles with dielectric substrates: effect of opticalconstants[J]. Nanotechnology, 2013, 24(3): 035201-035208.
[20] Wang Dong, Song Jun, Xian Jinhong, et al. Characteristic analysis of broadband plasmonic emitting devices based on transformation optics[J]. Optics Express, 23(12): 16109-16121.
[21] Vanbel M K, Afanas’ev V V, Adelmann C, et al. Tunneling of holes is observed by second-harmonic generation[J]. Applied Physics Letters, 2013, 2(8): 082104.
[22] Wu Tingting, Sun Yunxu, Shao Xugang, et al. Highly efficient phase-matched third harmonic generation from mid-IR to near-IR regions using an asymmetric plasmonic slot waveguide[J]. IEEE Photonics Journal, 2014, 6(5): 4801709.
[23] Yi Anlin, Yan Lianshan, Luo Bin, et al. Polarization-insensitive and receiver-sensitivity-gain format conversion for PDM signals based on dual-orthogonal-pump four-wave mixing in highly nonlinear fiber[J]. IEEE Photonics Journal, 2015, 7(1): 7200606.
[24] Metzger B, Hentschel M, Schumacher T, et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas[J]. Nano Letters, 2014, 14(5): 2867-2872.
[25] Hentschel M, Utikal T, Giessen H, et al. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas[J]. Nano Letters, 2012, 12(7): 3778-3782.
[26] Hanke T, Cesar J, Vanessa K, et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas[J]. Nano Letters, 2012, 12(2): 992-996.
[27] Song Jun, Xian Jinhong, Niu Hanben, et al. Significantly enhanced third harmonic generation using individual Au nanorods coated with gain materials[J]. IEEE Photonics Journal, 2015, 7(4): 4500909.
[28] Liu Xin, Wang Xianliang, Zhou Bin, et al. Size-controlled synthesis of Cu2-xE(E=S,Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films[J]. Advanced Functional Materials, 2013, 23(10): 1256-1264.
[29] Yuan Peiyan, Lee Y H, Gnanasammandhan M K, et al. Plasmon enhanced upconversion luminescence of NaYF4∶Yb,Er@SiO2@Agcore-shell nanocomposites for cell imaging [J]. Nanoscale, 2012, 4(16): 5132-5137.
[30] Morton J G, Day E S, Halas N J, et al. Nanoshells for photothermal cancer therapy[J]. Methods in Molecular Biology, 2010, 624:101-117.
[31] Chen Jingyi, Glaus C, Laforest R, et al. Gold nanocages as photothermal transducers for cancer treatment[J]. Small, 2010, 6(7): 811-817.
[32] Hsiangkuo Y, Fales A M, Tuan V D. Peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance[J]. Journal of the American Chemical Society, 2012, 134(28): 11358-11361.
[33] Ayala-Orozco C, Urban C, Knight M W, et al. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells[J]. ACS Nano, 2014, 8(6): 6372-6381.
[34] Li Qiang, Zhang Weichun, Zhao Ding, et al. Photothermal enhancement in core-shell structured plasmonic nanoparticles[J]. Plasmonics, 2014, 9(3): 623-630.
相似文献/References:
[1]汝丽丽,孟月东,陈龙威.氦等离子体前处理对多晶硅薄膜性能的影响[J].深圳大学学报理工版,2013,30(No.4(331-440)):398.[doi:10.3724/SP.J.1249.2013.04398]
Ru Lili,Meng Yuedong,and Chen Longwei.Influence of Helium plasma pre-treatment on properties of polycrystalline silicon films[J].Journal of Shenzhen University Science and Engineering,2013,30(6):398.[doi:10.3724/SP.J.1249.2013.04398]
[2]向皓明,屈浩,张涛,等.EAST装置多道极向相关反射仪诊断[J].深圳大学学报理工版,2016,33(6):606.[doi:10.3724/SP.J.1249.2016.06606]
Xiang Haoming,Qu Hao,Zhang Tao,et al.The diagnose of multi-channel poloidal correlation reflectometry on EAST[J].Journal of Shenzhen University Science and Engineering,2016,33(6):606.[doi:10.3724/SP.J.1249.2016.06606]
[3]赵哲,李永钢,张传国,等.铁和钨中晶界对材料辐照损伤影响的理论模拟[J].深圳大学学报理工版,2017,34(5):521.[doi:10.3724/SP.J.1249.2017.05521]
Zhao Zhe,Li Yonggang,et al.Theoretical study of effects of grain boundaries on the radiation damage in iron and tungsten[J].Journal of Shenzhen University Science and Engineering,2017,34(6):521.[doi:10.3724/SP.J.1249.2017.05521]