[1]陈玉佳,姜波.基于小波神经网络的加工番茄产量预测模型[J].深圳大学学报理工版,2015,32(5):546-550.[doi:10.3724/SP.J.1249.2015.05546]
 Chen Yujia and Jiang Bo.A wavelet neural network model for processing tomato yield forecasting[J].Journal of Shenzhen University Science and Engineering,2015,32(5):546-550.[doi:10.3724/SP.J.1249.2015.05546]
点击复制

基于小波神经网络的加工番茄产量预测模型()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第5期
页码:
546-550
栏目:
电子与信息科学
出版日期:
2015-09-18

文章信息/Info

Title:
A wavelet neural network model for processing tomato yield forecasting
文章编号:
201505014
作者:
陈玉佳姜波
新疆大学电气工程学院,乌鲁木齐 830047
Author(s):
Chen Yujia and Jiang Bo
School of Electrical Engineering, Xinjiang University, Urumqi 830047, P.R.China
关键词:
计算机神经网络小波分析BP神经网络加工蕃茄小波神经网络产量预测模型
Keywords:
computer neural network wavelet analysis back propagation (BP) neural network wavelet BP neural network proressing tomato yield forecasting model
分类号:
S 11+6
DOI:
10.3724/SP.J.1249.2015.05546
文献标志码:
A
摘要:
基于小波分析和BP(back propagation)神经网络,建立加工番茄产量预测的小波神经网络模型,为制定合理的种植规划和管理决策提供科学依据.通过对新疆某番茄基地的历史数据进行分析,以温度、灌水量、氮肥、磷肥和钾肥的投入量作为模型的输入,番茄产量作为输出,建立5-10-1的预测模型.实验结果表明,预测值与实际值之间的最大相对误差仅为0.23%,收敛速度和预测精度均优于BP神经网络,实现了加工番茄产量的有效预测.
Abstract:
We propose a tomato yield forecasting model based on wavelet and back propagation (BP) neural network. By analyzing historical data of a tomato production base in Xinjiang, we build a neural network model with 5-10-1 structure where the climate temperature, irrigation amount and applied amount of chemical fertilizers function as inputs, and the yield prediction of tomato production act as the output. Experimental results show that the maximum relative error between the predicted and real output is only 0.23%. The convergence speed and prediction accuracy of the wavelet BP network are better than those of the conventional neural networks, indicating that it is a more effective model to predict tomato yield.

参考文献/References:

[1] Turban E, Aronson J E, Liang T. Decision support systems and intelligent systems[M]. London(UK): Person Education,2009.
[2] Liu Jinfeng. Research and application of crop decision support system[D]. Urumqi: Xinjiang University, 2010.(in Chinese)
刘金凤.作物种植计划决策支持系统的研究与应用[D].乌鲁木齐:新疆大学,2010.
[3] You Kunpeng, Jiang Bo. The research in processing tomato production prediction with Markov chain applied research[J]. Anhui Agricultural Science Bulletin, 2012(15): 29-30.(in Chinese)
尤坤鹏,姜波.马尔科夫链在加工番茄产量预测中的应用研究[J].安徽农学通报,2012(15):29-30.
[4] Han Zequn, Jiang Bo. Processing tomato yield combination forecasting model[J]. Chinese Agricultural Science Bulletin, 2013, 29(3): 161-165.(in Chinese)
韩泽群,姜波.加工番茄产量组合预测模型研究[J].中国农学通报,2013,29(3):161-165.
[5] Yang Yanjun, Guo Pingyi, Li Hongyan, et al. Applications in greenhouse tomato cultivation with response surface design[J]. Plant Nutrition and Fertilizer Science, 2012(4): 941-946.(in Chinese)
杨艳君,郭平毅,李洪燕,等.响应面设计法在温室番茄栽培中的应用[J].植物营养与肥料学报,2012(4):941-946.
[6] Wang Xin, Ma Fuyu, Diao Min, et al.Processing tomato shoot dry matter partitioning and yield prediction simulation model[J]. Agricultural Engineering, 2013(22): 171-179.(in Chinese)
王新,马富裕,刁民,等.加工番茄地上部干物质分配与产量预测模拟模型[J].农业工程学报,2013(22):171-179.
[7] Fen Yan, Fu Qiang, Li Guoliang, et al. Wavelet BP network model to forecast water demand of rice[J]. Agricultural Engineering, 2007, 23(4): 66-69.(in Chinese)
冯艳,付强,李国良,等.水稻需水量预测的小波BP网络模型[J].农业工程学报,2007,23(4):66-69.
[8] Yang Na, Fu qiang, Wang Shuli, et al. Improvement and application of wavelet neural network model[J]. Systems Engineering Theory and Practice, 2009, 29(1): 168-173.(in Chinese)
杨娜,付强,王淑丽,等.小波神经网络模型的改进及其应用[J].系统工程理论与实践,2009,29(1): 168-173.
[9] Li Weineng, Huang Shuhua. The gem index prediction research based on support vector regression and BP neural network [J]. Electronic Technology and the Software Engineering,2013,26(24):23-24.(in Chinese)
李伟能,黄树花.基于支持向量回归与BP神经网络对创业板指数的预测研究[J]. 电子技术与软件工程,2013,26(24):23-24.
[10] Pan Ping. Slope displacement forecast based on wavelet neural network theory[J]. Chengdu University of Technology Natural Science, 2006, 33(2): 176-180.(in Chinese)
潘平.基于小波神经网络理论的边坡位移预测[J].成都理工大学学报自然科学版,2006,33(2): 176-180.
[11] Yuan Shifen. Wavelet neural network theory and its application in the temperature of slab forecast[D]. Taiyuan: Taiyuan University of Technology, 2005.(in Chinese)
员世芬.小波神经网络理论的研究及其在加热炉钢坯温度预报中的应用[D].太原:太原理工大学,2005.
[12] Wan Xing, Ding Jing, Zhang Xiaoli. Application of wavelet neural network in prediction of runoff[J]. People Yellow, 2005, 27(10): 33-36.(in Chinese)
万星,丁晶,张晓丽.小波神经网络在径流预测中的应用研究[J].人民黄河,2005,27(10):33-36.
[13] Li Baojian,Cheng Chuntian. Monthly discharge forecasting using wavelet neural networks with extreme learning machine [J].Science China Technology Science,2014(12)57:2441-2452.
[14] Jiang Youyi, Li Xiao. A method for face recognition based on wavelet neural network[C]//2010 Second WRI Golbal Congress on Inteligent Systems. S.l.: s.n., 2010:133-136.

相似文献/References:

[1]文振焜,高金花,杜以华,等.鲁棒可区分的压缩视频感知哈希算法研究[J].深圳大学学报理工版,2013,30(No.2(111-220)):157.[doi:10.3724/SP.J.1249.2013.02157]
 Wen Zhenkun,Gao Jinhua,Du Yihua,et al.Robust and discriminative perceptual hash algorithm in compressed video[J].Journal of Shenzhen University Science and Engineering,2013,30(5):157.[doi:10.3724/SP.J.1249.2013.02157]
[2]杨珺,佘佳丽,刘艳珍.基于深度置信网络的时间序列预测[J].深圳大学学报理工版,2019,36(6):718.[doi:10.3724/SP.J.1249.2019.06718]
 YANG Jun,SHE Jiali,and LIU Yanzheng.Time series prediction based on deep confidence networks[J].Journal of Shenzhen University Science and Engineering,2019,36(5):718.[doi:10.3724/SP.J.1249.2019.06718]
[3]马杰,王旭娇,马鹏飞,等.融合kd tree邻域查询的深度学习点云分类网络[J].深圳大学学报理工版,2020,37(1):79.[doi:10.3724/SP.J.1249.2020.01079]
 MA Jie,WANG Xujiao,MA Pengfei,et al.Deep learning network for point cloud classification based on k-dimensional tree neighbor query[J].Journal of Shenzhen University Science and Engineering,2020,37(5):79.[doi:10.3724/SP.J.1249.2020.01079]

备注/Memo

备注/Memo:
Received:2015-03-19;Accepted:2015-08-27
Foundation:National Natural Science Foundation of China(61064005)
Corresponding author:Processor Jiang Bo. E-mail:jiangbo@xju.edu.cn
Citation:Chen Yujia, Jiang Bo. A wavelet neural network model for processing tomato yield forecasting[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(5): 546-550.(in Chinese)
基金项目:国家自然科学基金资助项目(61064005)
作者简介:陈玉佳(1989-),女(汉族),甘肃省武威市人,新疆大学电气工程学院硕士. E-mail:46360109@qq.com
引文:陈玉佳,姜波. 基于小波神经网络的加工番茄产量预测模型[J]. 深圳大学学报理工版,2015,32(5):546-550.
更新日期/Last Update: 2015-09-13