[1]杨智,邹才能,吴松涛,等.含油气致密储层纳米级孔喉特征及意义[J].深圳大学学报理工版,2015,32(3):257-265.[doi:10.3724/SP.J.1249.2015.03257]
 Yang Zhi,Zou Caineng,Wu Songtao,et al.Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J].Journal of Shenzhen University Science and Engineering,2015,32(3):257-265.[doi:10.3724/SP.J.1249.2015.03257]
点击复制

含油气致密储层纳米级孔喉特征及意义()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第3期
页码:
257-265
栏目:
环境与能源
出版日期:
2015-05-20

文章信息/Info

Title:
Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value
文章编号:
201503006
作者:
杨智邹才能吴松涛陶士振侯连华朱如凯袁选俊
中国石油勘探开发研究院,北京 100083
Author(s):
Yang Zhi Zou Caineng Wu Songtao Tao Shizhen Hou Lianhua Zhu Rukai and Yuan Xuanjun
PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, P.R.China
关键词:
纳米级孔喉致密储层致密油致密气页岩油页岩气连续型油气聚集
Keywords:
nano-sized pore-throat tight reservoir tight oil tight gas shale oil shale gas continuous hydrocarbon accumulation
分类号:
TE 311
DOI:
10.3724/SP.J.1249.2015.03257
文献标志码:
A
摘要:
从毫-微米级孔喉圈闭油气,向微-纳米级孔喉连续型油气延伸,是油气储层地质研究的趋势,加强对非常规油气储层微观表征研究意义重大.应用场发射扫描电镜和纳米计算机断层扫描重构等先进技术,在含油气致密泥页岩、砂岩和灰岩储层中发现孔径小于1 μm的纳米级孔喉系统普遍发育.研究发现,在非常规源储共生层系油气储层内,纳米级孔喉是储集空间的主体,占储集空间总体积的70%~80%,微米到毫米级孔隙、裂缝等储集空间仅局部发育.非常规油气致密储层主体孔径为20~500 nm,其中页岩气储层孔径为5~200 nm,页岩油储层孔径为30~400 nm,致密灰岩油储层孔径为40~500 nm,致密砂岩油储层孔径为50~900 nm,致密砂岩气储层孔径为40~700 nm.油气水在纳米级孔喉系统中,渗流能力差,油气被滞留吸附,在源储共生层系中大面积连续分布,泥页岩烃源层中可能滞留了占总生烃量30%~40%的油气资源,近源致密砂岩、灰岩等储层中可能聚集了20%~30%的油气资源,纳米级孔喉储集空间中很可能聚集了超乎想象的巨量油气资源.非常规致密储层中纳米级孔喉系统的发现,改变了对油气储层微观孔隙空间的传统认识,对认识非常规源储共生层系油气连续聚集的地质特征,拓展资源潜力有重要战略价值.
Abstract:
Petroleum geologists are expanding their perspective from conventional traps to unconventional continuous reservoirs, and characterization study for unconventional tight reservoir in micro-meter and nano-meter scale is becoming more and more important. Based on the field emission scanning electron microscope (SEM) and the nano-CT reconfiguration technique, we verify the nano-pore-throat system in tight sandstone, shale and limestone with size less than one micron. Systematic studies show that nano-scale pore-throat system develops extensively in rocks of unconventional reservoirs serving as both source and reservoir rock. The nano-scale pores provide the main storage space accounting for 70%-80% of the total, and millimeter-pores, micro-pores and micro-fractures develop much less. Pore diameter of the unconventional tight reservoir rock is mainly 20-500 nm, in which 5-200 nm for that of the shale gas reservoir and 30-400 nm for that of the shale oil reservoir, the pore size of the tight limestone oil reservoir is 40-500 nm, pore size of the tight sandstone oil reservoir is 50-900 nm, and pore size of the tight sandstone gas reservoir is 40-700 nm. Oil, gas and water existing within the nano-pore-throat system are difficult to flow or separate. Oil and gas are caught or adsorbed and distributed extensively in the symbiotic layer of source and reservoir rocks. Petroleum resources caught in shales account for 30%-40% of the total generated, and those in tight sandstone and limestone adjacent to source rock account for 20%-30% of the total. Consequently, unimaginable amounts of oil and gas resources may be accumulated in the nano-scale pore-throat space in unconventional reservoirs. The discovery of nano-scale pore system within unconventional tight reservoirs has changed the traditional understanding of the micro space fabric of reservoir rocks. This provides the significant scientific value on further understanding the geological characteristics of continuous petroleum accumulation in unconventional reservoirs, and increasing more valuable resources of unconventional reservoirs in future.

参考文献/References:

[1] Schmoker J W. National assessment report of USA oil and gas resources[R]. Reston: U.S. Geological Survey, 1995.
[2] Zou Caineng, Yang Zhi, Tao Shizhen, et al. Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: the Ordos basin, North-Central China[J]. Earth-Science Reviews, 2013, 126: 358-369.
[3] Zou Caineng, Tao Shizhen, Hou Lianhua, et al. Unconventional petroleum geology[M]. Beijing: Geology Press, 2011.(in Chinese)
邹才能,陶士振,侯连华,等. 非常规油气地质[M]. 北京:地质出版社,2011.
[4] Loucks R G, Ruppel S C. Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
[5] Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340.
[6] Chen Lihua. Application of EMS in petroleum geology[M]. Beijing: Petroleum Industry Press, 1990: 20-56.(in Chinese)
陈丽华. 扫描电镜在石油地质上的应用[M].北京:石油工业出版社, 1990: 20-56.
[7] Qiu Yinan, Xue Shuhao.Petroleum reservoir evaluation technology[M]. Beijing: Petroleum Industry Press, 1997.(in Chinese)
裘怿楠,薛叔浩. 油气储层评价技术[M].北京:石油工业出版社, 1997.
[8] Sun Junchang, Yang Zhengming, Tang Ligen, et al. Study on distribution law of irreducible water and gas saturation of tight sandstone gas reservoir[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(5): 377-383.(in Chinese)
孙军昌,杨正明,唐立根,等. 致密气藏束缚水分布规律及含气饱和度研究[J]. 深圳大学学报理工版,2011,28(5):377-383.
[9] Teng Qi, Yang Zhengming, Liu Xuewei, et al. Well group development process physical simulation of the ultra-low permeability reservoirs[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(3): 299-305.(in Chinese)
滕起,杨正明,刘学伟,等. 特低渗透油藏井组开发过程物理模拟[J].深圳大学学报理工版,2013,30(3):299-305.
[10] Ying Fengxiang, Yang Shisheng, Zhang Min, et al. Reservoir pore structure study using laser scanning confocal microscope[J]. Acta Sedimentologica Sinica, 2002, 20(1):75-79.(in Chinese)
应凤祥,杨式升,张敏,等. 激光扫描共聚焦显微镜研究储层孔隙结构[J].沉积学报, 2002, 20(1):75-79.
[11] Guo Hekun, Liu Qiang, Li Haibo, et al. Microstructural characteristics of the Jurassic tight oil reservoirs in Sichuan Basin[J].Journal of Shenzhen University Science and Engineering,2013,30(3):306-312.(in Chinese)
郭和坤,刘强,李海波,等. 四川盆地保罗系致密储层孔隙结构特征[J].深圳大学学报理工版,2013,30(3):306-312.
[12] Yang Zhengming, Zhang Yingzhi, Hao Mingqiang, et al. Low permeability reservoir evaluation method[J]. Acta Petrolei Sinica, 2006, 27(2):64-67.(in Chinese)
杨正明,张英芝,郝明强,等.低渗透油田储层综合评价方法[J].石油学报, 2006, 27(2):64-67.
[13] Yin Zongjun, Mi Maoyan. Application of synchrotron X-ray microtomography in paleontology for nondestructive 3-D imaging of fossil specimens[J]. Physics, 2009, 38(7):504-410.(in Chinese)
殷宗军,米茂炎. 同步辐射X射线相衬显微CT在古生物学中的应用[J]. 物理, 2009, 38(7):504-410.
[14] Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.(in Chinese)
邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.
[15] Zou Caineng, Yang Zhi, Tao Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26.(in Chinese)
邹才能,杨智,陶士振,等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发,2012,39(1): 13-26.
[16] Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.(in Chinese)
邹才能,朱如凯,白斌,等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报,2011,27(6): 1857-1864.

相似文献/References:

[1]杨智,付金华,刘新社,等.苏里格气田上古生界连续型致密气形成过程[J].深圳大学学报理工版,2016,33(3):221.[doi:10.3724/SP.J.1249.2016.03221]
 Yang Zhi,Fu Jinhua,Liu Xinshe,et al.Formation process of upper paleozoic continuous tight sandstone gas reservoir in the Sulige gas field[J].Journal of Shenzhen University Science and Engineering,2016,33(3):221.[doi:10.3724/SP.J.1249.2016.03221]
[2]李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
 Li Shuai,Ding Yunhong,Liu Guangfeng,et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J].Journal of Shenzhen University Science and Engineering,2017,34(3):98.[doi:10.3724/SP.J.1249.2017.01098]
[3]张云峰,臧起彪,孙博,等.基于氮吸附和压汞数据确定致密储层孔径分布 ——以松辽盆地大安油田扶余油层为例[J].深圳大学学报理工版,2018,35(4):353.[doi:10.3724/SP.J.1249.2018.02353]
 ZHANG Yunfeng,ZANG Qibiao,SUN Bo,et al.The confirmation of micro-aperture distribution of tight reservoir base on the data of pressing mercury-nitrogen adsorption— an example from Fuyu oil layer in Da’an oilfield of Songliao basin[J].Journal of Shenzhen University Science and Engineering,2018,35(3):353.[doi:10.3724/SP.J.1249.2018.02353]
[4]程林松,时俊杰,曹仁义,等.局部非热平衡对增强型地热系统的影响探究[J].深圳大学学报理工版,2022,39(6):649.[doi:10.3724/SP.J.1249.2022.06649]
 CHENG Linsong,SHI Junjie,CAO Renyi,et al.Influence of local thermal non-equilibrium on enhanced geothermal system[J].Journal of Shenzhen University Science and Engineering,2022,39(3):649.[doi:10.3724/SP.J.1249.2022.06649]

备注/Memo

备注/Memo:
Received:2015-02-11;Accepted:2015-04-27
Foundation:National Basic Research Program of China (2014CB239000); National Science and Technology Major Project (2011ZX05001)
Corresponding author:Professor Zou Caineng. E-mail: zcn@petrochina.com.cn
Citation: Yang Zhi, Zou Caineng, Wu Songtao, et al. Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(3): 257-265.(in Chinese)
基金项目:国家重点基础研究发展计划资助项目(2014CB239000);国家科技重大专项资助项目(2011ZX05001)
作者简介:杨智(1980—),男(汉族),中国石油勘探开发研究院高级工程师、博士. E-mail: yangzhi2009@petrochina.com.cn
引文:杨智,邹才能,吴松涛,等. 含油气致密储层纳米级孔喉特征及意义[J]. 深圳大学学报理工版,2015,32(3):257-265.
更新日期/Last Update: 2015-05-11