参考文献/References:
[1] Zhang Guoqing, Ma Li, Ni Pei, et al. Research progress of low temperature electrlytes for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2008, 27(2): 209-213.( in Chinese )
张国庆, 马莉, 倪佩, 等. 锂离子电池低温电解液的研究进展[J]. 化工进展, 2008, 27(2): 209-213.
[2] Jiang Z, Li C, Hao S, et al. An easy way for preparing high performance porous silicon powder by acid etching Al-Si alloy powder for lithium ion battery[J]. Electrochimica Acta, 2014, 115: 393-398.
[3] Yu C, Li X, Ma T, et al. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation[J]. Advanced Energy Materials, 2012, 2(1): 68-73.
[4] Huggins R A. Lithium alloy negative electrodes[J]. Journal of Power Sources, 1999(81/82): 13-19.
[5] Koo B, Kim H, Cho Y, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie International Edition, 2012, 51(35): 8762-8767.
[6] Ge M, Rong J, Fang X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters, 2012, 12(5): 2318-2323.
[7] Hatchard T D, Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. Journal of The Electrochemical Society, 2004, 151(6): A838-A842.
[8] Zhu Y, Liu W, Zhang X, et al. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries[J]. Langmuir, 2012, 29(2): 744-749.
[9] Al-Maghrabi M A, Thorne J S, Sanderson R J, et al. A combinatorial study of the Sn-Si-C system for Li-ion battery applications[J]. Journal of The Electrochemical Society, 2012, 159(6): A711-A719.
[10] Liu H K, Guo Z, Wang J, et al. Si-based anode materials for lithium rechargeable batteries[J]. Journal of Materials Chemistry, 2010, 20(45): 10055-10057.
[11] Hwa Y, Park C M, Sohn H J. Modified SiO as a high performance anode for Li-ion batteries[J]. Journal of Power Sources, 2013, 222: 129-134.
[12] Abel P R, Lin Y M, Celio H, et al. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation[J]. ACS Nano, 2012, 6(3): 2506-2516.
[13] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials, 1998, 10(10): 725-763.
[14] Wang C M, Li X, Wang Z, et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries[J]. Nano Letters, 2012, 12(3): 1624-1632.
[15] Ogata K, Salager E, Kerr C J, et al. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy[J]. Nature Communications, 2014, 5: 3217.
[16] Key B, Bhattacharyya R, Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26): 9239-9249.
[17] Tao Zhanliang, Wang Hongbo, Chen Jun. Si-based materials as the anode of lithium-ion batteries[J]. Progress in Chemistry, 2011, 23(2/3): 318-327.( in Chinese )
陶占良, 王洪波. 陈军. 锂离子电池负极硅基材料[J]. 化学进展, 2011, 23(2/3): 318-327.
[18] Choi N S, Yew K H, Kim H, et al. Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte[J]. Journal of Power Sources, 2007, 172(1): 404-409.
[19] Ma H, Cheng F, Chen J Y, et al. Nest-like silicon nanospheres for high-capacity lithium storage[J]. Advanced Materials, 2007, 19(22): 4067-4070.
[20] Chockla A M, Klavetter K C, Mullins C B, et al. Tin-seeded silicon nanowires for high capacity Li-ion batteries[J]. Chemistry of Materials, 2012, 24(19): 3738-3745.
[21] Cui L F, Ruffo R, Chan C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2008, 9(1): 491-495.
[22] Song T, Xia J, Lee J H, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J]. Nano Letters, 2010, 10(5): 1710-1716.
[23] Fll H, Hartz H, Ossei Wusu E, et al. Si nanowire arrays as anodes in Li ion batteries[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2010, 4(1/2): 4-6.
[24] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.
[25] Chen L, Xie J, Yu H, et al. An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries[J]. Journal of Applied Electrochemistry, 2009, 39(8): 1157-1162.
[26] Uehara M, Suzuki J, Tamura K, et al. Thick vacuum deposited silicon films suitable for the anode of Li-ion battery[J]. Journal of Power Sources, 2005, 146(1/2): 441-444.
[27] Kang Y M, Park M S, Lee J Y, et al. Si-Cu/carbon composites with a core-shell structure for Li-ion secondary battery[J]. Carbon, 2007, 45(10): 1928-1933.
[28] Doh C H, Shin H M, Kim D H, et al. A new composite anode, Fe-Cu-Si/C for lithium ion battery[J]. Journal of Alloys and Compounds, 2008, 461(1/2): 321-325.
[29] Vediappan K, Lee C W. Synthesis and electrochemical characterization of Si-Mn alloy anode materials for high energy lithium secondary batteries[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(7): 5969-5974.
[30] Jeon S M, Song J J, Kim S I, et al. Microstructure and phase analyses of melt-spun Si-Ni base anode materials for Li-ion battery[J]. Metals and Materials International, 2013, 19(1): 27-31.
[31] Yan J M, Huang H Z, Zhang J, et al. The study of Mg2Si/carbon composites as anode materials for lithium ion batteries[J]. Journal of Power Sources, 2008, 175(1): 547-552.
[32] Choi N S, Yao Y, Cui Y, et al. One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials[J]. Journal of Materials Chemistry, 2011, 21(27): 9825-9840.
[33] Chen L B, Xie J Y, Yu H C, et al. Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries[J]. Electrochimica Acta, 2008, 53(28): 8149-8153.
[34] Wang J, Wang Y, Zhang P, et al. Preparation and electrochemical properties of binary SixSb immiscible alloy for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 610: 308-314.
[35] Kim J W, Ryu J H, Lee K T, et al. Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries[J]. Journal of Power Sources, 2005, 147(1/2): 227-233.
[36] Wang G X, Sun L, Bradhurst D H, et al. Innovative nanosize lithium storage alloys with silica as active centre[J]. Journal of Power Sources, 2000, 88(2): 278-281.
[37] Liu W R, Wu N L, Shieh D T, et al. Synthesis and characterization of nanoporous NiSi-Si composite anode for lithium-ion batteries[J]. Journal of The Electrochemical Society, 2007, 154(2): A97-A102.
[38] Wu C H, Lui T S, Hung F Y, et al. Effects of vacuum annealing on the charge-discharge characteristics of eutectic Al-Si/Al thin film as anode material for Li-ion batteries[J]. Materials Transactions, 2012, 53(9): 1669-1673.
[39] Wang F, Yao G, Xu M, et al. Ag-Sb composite prepared by chemical reduction method as new anode materials for lithium-ion batteries[J]. Materials Science and Engineering: B, 2011, 176(5): 442-445.
[40] Zhang L P, Lu F F, Song X L, et al. Effects of the phase constitution and microstructure on the electrochemical properties of melt-spun Al88-XSi12MnX anode materials for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2012, 42(10): 843-850.
[41] Ahn D K, Song J J, Ahn H J, et al. The effect of Ni on the microstructures and electrochemical properties of Si-Ti base alloys for lithium secondary batteries[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3522-3525.
[42] Kang H K, Lee S R, Cho W I, et al. Effect of multilayer structure on cyclic performance of Si/Fe anode electrode in Lithium-ion secondary batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(5): 1569-1577.
[43] Chae J E, Yang J M, Park K J, et al. Microstructural analysis of Si-Ti-Fe alloy anode materials for Li-ion secondary batteries[J]. Korean Journal of Metals and Materials, 2013, 51(6): 429-436.
[44] Liu Y F, He Y P, Ma R J, et al. Improved lithium storage properties of Mg2Si anode material synthesized by hydrogen-driven chemical reaction[J]. Electrochemistry Communications, 2012, 25(1): 15-18.
[45] Song T, Kil K C, Jeon Y, et al. Nitridated Si-Ti-Ni alloy as an anode for Li rechargeable batteries[J]. Journal of Power Sources, 2014, 253: 282-286.
[46] Cho J S, Hong S H, Chu Y Y, et al. In the effect of transition metals addition on electrochemical properties of Si-Ti-Ni alloy anode for lithium ion batteries[C]// Section Anodes Ⅱ of 224th ECS Meeting. San Francisco (USA) :The Electrochemical Society, 2013: 964-964.
[47] Zhang L, Song X, Wang F, et al. The electrochemical properties of Al-Si-Ni alloys composed of nanocrystal and metallic glass for lithium-ion battery anodes[J]. Journal of Solid State Electrochemistry, 2012, 16(6): 2159-2167.
[48] Lacroix-Orio L, Tillard M, Belin C. Synthesis, crystal and electronic structure of Li13Ag5Si6, a potential anode for Li-ion batteries[J]. Solid State Sciences, 2008, 10(1): 5-11.
[49] Kim I S, Blomgren G E, Kumta P N. Study of electrochemical inactivity of nanocomposites generated using high-energy mechanical milling[J]. Journal of electrochemical society, 2005, 152(1): A248-A254.
[50] Guo S, Li H X, Bai H M, et al. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries[J]. Journal of Power Sources, 2014, 248: 1141-1148.
[51] Hwang C M, Park J W. Electrochemical properties of Si-Ge-Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(19): 6737-6747.
[52] Wang X, Wen Z, Liu Y, et al. A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries[J]. Electrochimica Acta, 2009, 54(20): 4662-4667.
[53] Ng S H, Wang J, Konstantinov K, et al. Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery anodes[J]. Journal of Power Sources, 2007, 174(2): 823-827.
[54] Liu Y, Wen Z Y, Wang X Y, et al. Electrochemical behaviors of Si/C composite synthesized from F-containing precursors[J]. Journal of Power Sources, 2009, 189(1): 733-737.
[55] Lee J K, Kung M C, Trahey L, et al. Nanocomposites derived from phenol-functionalized Si nanoparticles for high performance Lithium ion battery anodes[J]. Chemistry of Materials, 2008, 21(1): 6-8.
[56] Xu Y, Yin G, Ma Y, et al. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source[J]. Journal of Materials Chemistry, 2010, 20(16): 3216-3220.
[57] Zhou M, Pu F, Wang Z, et al. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11394-11401.
[58] Qiao L, Sun X, Yang Z, et al. Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries[J]. Carbon, 2013, 54: 29-35.
[59] Liu X, Xie K, Zheng C M, et al. Si-O-C materials prepared with a sol-gel method for negative electrode of lithium battery[J]. Journal of Power Sources, 2012, 214: 119-123.
[60] Yin Y X, Xin S, Wan L J, et al. Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(29): 14148-14154.
相似文献/References:
[1]唐文伟,桂文池,曾新平.聚硫酸铁铝制备改进及其处理重金属废水[J].深圳大学学报理工版,2011,28(No.3(189-282)):276.
TANG Wen-wei,GUI Wen-chi,and ZENG Xin-ping.Improvement of preparation of PFAS and its effect on treating heavy metal in wastewater[J].Journal of Shenzhen University Science and Engineering,2011,28(5):276.
[2]刘剑洪,吴双泉,何传新,等.碳纳米管和碳微米管的结构、性质及其应用[J].深圳大学学报理工版,2013,30(No.1(001-110)):1.[doi:10.3724/SP.J.1249.2013.01001]
Liu Jianhong,Wu Shuangquan,He Chuanxin,et al.Structure, property and application of carbon nanotubes and carbon microtubes[J].Journal of Shenzhen University Science and Engineering,2013,30(5):1.[doi:10.3724/SP.J.1249.2013.01001]
[3]任祥忠,刘涛,张培新,等.锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2研究进展[J].深圳大学学报理工版,2014,31(3):239.[doi:10.3724/SP.J.1249.2014.03239]
Ren Xiangzhong,Liu Tao,Zhang Peixin,et al.Progress of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries[J].Journal of Shenzhen University Science and Engineering,2014,31(5):239.[doi:10.3724/SP.J.1249.2014.03239]
[4]罗仲宽,尹春丽,吴其兴,等.有机电解液型锂空气电池空气电极研究进展[J].深圳大学学报理工版,2015,32(2):111.[doi:10.3724/SP.J.1249.2015.02111]
Luo Zhongkuan,Yin Chunli,Wu Qixing,et al.Research progress on air electrode in organic electrolyte lithium-air battery[J].Journal of Shenzhen University Science and Engineering,2015,32(5):111.[doi:10.3724/SP.J.1249.2015.02111]
[5]王振峰,张小雪,李翠华,等.离子液体复合电解质与三元正极的相容性[J].深圳大学学报理工版,2015,32(3):251.[doi:10.3724/SP.J.1249.2015.03251]
Wang Zhenfeng,Zhang Xiaoxue,Li Cuihua,et al.Compatibility of ternary cathode with ionic liquid-based composite electrolyte[J].Journal of Shenzhen University Science and Engineering,2015,32(5):251.[doi:10.3724/SP.J.1249.2015.03251]
[6]李永亮,马定涛,张培新.静电纺丝制备富锂锰基锂电正极材料及其性能[J].深圳大学学报理工版,2017,34(2):132.
Li Yongliang,Ma Dingtao,and Zhang Peixin. Electrospinning preparation and performance of lithium-rich manganese-based lithium ion battery cathode material[J].Journal of Shenzhen University Science and Engineering,2017,34(5):132.
[7]石钏,李永亮,任祥忠,等.高性能锂电正极材料LiV3O8-MWCNTs的制备与性能[J].深圳大学学报理工版,2017,34(6):551.[doi:10.3724/SP.J.1249.2017.06551]
Shi Chuan,Li Yongliang,Ren Xiangzhong,et al.Preparation and properties of LiV3O8-MWCNTs as high performance cathode materials for lithium-ion battery[J].Journal of Shenzhen University Science and Engineering,2017,34(5):551.[doi:10.3724/SP.J.1249.2017.06551]
[8]杨世利,常家华,邢智,等.铅蓄电池工业场地铅污染分布特征及风险分析[J].深圳大学学报理工版,2019,36(6):649.[doi:10.3724/SP.J.1249.2019.06649]
YANG Shili,CHANG Jiahua,et al.Distribution characteristics and risk analysis of lead pollution in lead storage battery industrial sites[J].Journal of Shenzhen University Science and Engineering,2019,36(5):649.[doi:10.3724/SP.J.1249.2019.06649]