[1]付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报理工版,2014,31(2):187-192.[doi:10.3724/SP.J.1249.2014.02187]
 Fu Ye,Li Qinghua,and Xu Shilang.The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites[J].Journal of Shenzhen University Science and Engineering,2014,31(2):187-192.[doi:10.3724/SP.J.1249.2014.02187]
点击复制

高温后纳米改性水泥基材料的残余抗折强度()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年第2期
页码:
187-192
栏目:
土木建筑工程
出版日期:
2014-03-20

文章信息/Info

Title:
The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites
文章编号:
20140213
作者:
付晔李庆华徐世烺
浙江大学建筑工程学院,杭州 310058
Author(s):
Fu Ye Li Qinghua and Xu Shilang
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, P.R.China
关键词:
建筑材料残余抗折强度水泥基复合材料混杂纤维纳米改性微观结构
Keywords:
building materials flexural strength cementitious composites hybrid fiber nano-modified microstructure
分类号:
TU 525
DOI:
10.3724/SP.J.1249.2014.02187
文献标志码:
A
摘要:
对6种不同掺量钢纤维和PVA纤维组合的纳米改性水泥基材料(high performance nano-modified cementitious composites, HPNCC)高温后的抗折强度进行试验研究,探讨不同高温(200、400、600和800 ℃)对HPNCC抗折强度、质量损失和微观结构的影响,寻求试验范围内钢纤维与PVA纤维的最佳掺量组合.研究结果表明,经历200 ℃高温1 h后,HPNCC质量损失平均为3.90%,抗折强度略有降低,微观结构没有明显变化;经历400 ℃高温1 h后,由于HPNCC质量损失大幅增加(平均为15.60%)及内部的PVA纤维融化、毛细孔水分蒸发、孔洞扩张和水泥基基体劣化,其抗折强度急剧下降; 经历600 ℃高温1 h后,HPNCC质量损失减缓,平均为16.89%,PVA纤维完全融化、挥发,抗折强度下降明显;经历 800 ℃ 高温1 h后,微观结构进一步劣化,最优配比HPNCC的抗折强度保留36.52%.
Abstract:
The influence of micro polyvinyl alcohol (PVA) fibers and steel fibers on fire resistance, microstructures and mass loss of high performance nano-modified cementitious composite (HPNCC) is discussed. Specimens containing two different contents of PVA fibers and three different contents of steel fibers are examined. The specimens are exposed to a series of temperatures (200, 400, 600 and 800 ℃). The fire resistance of mixtures are quantified in terms of the residual mechanical properties (flexural strengths, deflection and stiffness) and mass loss. The microstructure characterization after exposure to fire is examined by scanning electron microscopy. Results indicate that after HPNCC is exposed to 200 ℃ for an hour, average mass loss of HPNCC is 3.90% while there is little change in flexural strength; after 400℃ exposure for an hour, average mass loss of HPNCC sharply reaches 15.60% and flexural strength drops obviously for melting of PVA fibers and degradation of cement matrix; after HPNCC is exposed to 800℃ for an hour, the optimal composition of HPNCC reserve is up to 36.52% of flexural strength.

参考文献/References:

[1] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492.
[2] Xu Shilang,Li Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008(6):45-60.(in Chinese)
徐世烺,李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报, 2008(6):45-60.
[3] Xu Shilang, Li Qinghua. Basic application of ultra high toughness cementitious composites in advanced engineering structures[M]. Beijing:Science Press,2010.(in Chinese)
徐世烺,李庆华. 超高韧性水泥基复合材料在高性能建筑结构中的基本应用[M].北京:科学出版社 2010.
[4] Sahmaran M, Lachemi M,Li V C. Assessing mechanical properties and microstructure of fire-damaged engineered cementitious composites[J]. ACI Materials Journal, 2010,107(3):297-304.
[5] Sahmaran M, zbay E, Yücel H, et al. Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures[J]. Journal of Materials in Civil Engineering, 2011,23(12):1735-1745.
[6] Tian Ludan, Zhang Jingwei, Dong Shuai, et al. Study on mechanical properties of cementitious composites reinforced with PVA fibers after exposure to high temperatures[J]. Concrete,2011(12): 31-35.(in Chinese)
田露丹,张经伟,董帅,等. PVA 纤维增韧水泥基复合材料高温后力学性能研究[J]. 混凝土, 2011(12):31-35.
[7] Gao Guanpeng. Experenmental study on the mechanical properties and anti-permeability of PVA-SHCC after high temperature[D]. Qingdao:Qingdao Technological University, 2012.(in Chinese)
高贯鹏. 高温后PVA-SHCC的力学性能与抗渗性能试验研究[D]. 青岛:青岛理工大学,2012.
[8] Suhaendi S L,Horiguchi T. Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition[J]. Cement and Concrete Research, 2006,36(9):1672-1678.
[9] Chen B, Liu J. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures[J]. Cement and Concrete Research, 2004, 34(6): 1065-1069.
[10] Chen B, Liu J. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures[J]. Cement and Concrete Research, 2004, 34(6): 1065-1069.
[11] Gao Xiang, Li Qinghua,Xu Shilang. Compressive strength and flexural properties of high performance nano-binder cementitious composites[J]. Applied Mechanics and Materials, 2013, 275:2064-2068
[12] Gao Xiang, Li Qinghua, Xu Shilang, et al. Experimental Studies on Permeability and Pore Size Distribution of High Performance Nano-binder Cementitious Composites[C]// Section Ⅲ of the 22nd National Structural Engineering Conference Proceedings. Xinjiang(China): Chinese Mechanical Institute, 2013: 484-487.(in Chinese)
高翔,李庆华,徐世烺,等. 高性能水泥基纳米胶凝材料渗透性能及孔径分布试验研究[C]// 第22届全国结构工程学术会议论文集第Ⅲ册. 新疆:中国力学学会,2013: 484-487.
[13] Ibrahim R K, Hamid R, Taha M R. Fire resistance of high-volume fly ash mortars with nanosilica addition[J]. Construction and Building Materials, 2012, 36: 779-786.
[14] Morsy M S, Al-Salloum Y A,Abbas H, et al. Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures[J]. Construction and Building Materials, 2012, 35:900-905.

相似文献/References:

[1]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(2):103.
[2]刘贤淼,江泽慧,费本华.玻璃纤维布增强造纸脱墨污泥纤维板性能研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):371.[doi:10.3724/SP.J.1249.2012.04371]
 LIU Xian-miao,JIANG Ze-hui,and FEI Ben-hua.Paper deinking sludge fiberboard reinforced by fiberglass fabric[J].Journal of Shenzhen University Science and Engineering,2012,29(2):371.[doi:10.3724/SP.J.1249.2012.04371]
[3]彭家惠,刘先锋,张建新,等.磷酸盐对α半水脱硫石膏凝结硬化的作用机理[J].深圳大学学报理工版,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
 Peng Jiahui,Liu Xianfeng,Zhang Jianxin,et al.Mechanisms of phosphate on the hydration and hardening of α-hemihydrate desulfurization gypsum[J].Journal of Shenzhen University Science and Engineering,2014,31(2):388.[doi:10.3724/SP.J.1249.2014.04388]
[4]倪卓,邢锋,石开勇,等.微胶囊对水泥自修复复合材料微观结构的影响[J].深圳大学学报理工版,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
 Ni Zhuo,Xing Feng,Shi Kaiyong,et al.Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J].Journal of Shenzhen University Science and Engineering,2015,32(2):68.[doi:10.3724/SP.J.1249.2015.01068]
[5]童芸芸,叶良,马超.钢筋腐蚀产物实时检测的再钝化机理分析[J].深圳大学学报理工版,2017,34(1):75.[doi:10.3724/SP.J.1249.2017.01075]
 Tong Yunyun,Ye Liang,and Ma Chao.Real time analysis on repassivation mechanism of steel rebar corrosion products[J].Journal of Shenzhen University Science and Engineering,2017,34(2):75.[doi:10.3724/SP.J.1249.2017.01075]
[6]刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(6):618.[doi:10.3724/SP.J.1249.2017.06618]
 Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J].Journal of Shenzhen University Science and Engineering,2017,34(2):618.[doi:10.3724/SP.J.1249.2017.06618]
[7]丁铸,孙晨,戴梦希.磷酸盐水泥砂浆作为锚固胶的性能研究[J].深圳大学学报理工版,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
 DING Zhu,SUN Chen,and DAI Mengxi.Properties of phosphate cement mortar as an anchorage adhesive[J].Journal of Shenzhen University Science and Engineering,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
[8]刘斌清,仵江涛,陈华鑫,等.多聚磷酸改性沥青的路用性能及机理分析[J].深圳大学学报理工版,2018,35(3):292.[doi:10.3724/SP.J.1249.2018.03292]
 LIU Binqing,WU Jiangtao,et al.Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J].Journal of Shenzhen University Science and Engineering,2018,35(2):292.[doi:10.3724/SP.J.1249.2018.03292]
[9]董必钦,郭邦文,刘昱清,等.水泥净浆水分传输过程可视化表征与定量分析[J].深圳大学学报理工版,2018,35(3):285.[doi:10.3724/SP.J.1249.2018.03285]
 DONG Biqin,GUO Bangwen,LIU Yuqing,et al.Visualization and quantitative analysis of water transport evolution in cementitious materials[J].Journal of Shenzhen University Science and Engineering,2018,35(2):285.[doi:10.3724/SP.J.1249.2018.03285]
[10]陈歆,郑秀华,韩凯.玄武岩纤维掺杂混凝土材料特性研究[J].深圳大学学报理工版,2019,36(1):61.[doi:10.3724/SP.J.1249.2019.01061]
 CHEN Xin,ZHENG Xiuhua,and HAN Kai.Characterization of basalt fiber doped concrete materials[J].Journal of Shenzhen University Science and Engineering,2019,36(2):61.[doi:10.3724/SP.J.1249.2019.01061]

备注/Memo

备注/Memo:
Received:2014-01-06;Accepted:2014-02-21
Foundation:The National Science and Technology Support Program(2012BAJ13B04)
Corresponding author:Associate professor Li Qinghua. E-mail: liqinghua@zju.edu.cn
Citation:Fu Ye,Li Qinghua,Xu Shilang. The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(2): 187-192.(in Chinese)
基金项目:国家科技支撑计划资助项目(2012BAJ13B04)
作者简介:付晔(1988-),女(汉族),山东省菏泽市人,浙江大学硕士研究生. E-mail: fuye321@163.com
引文:付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J]. 深圳大学学报理工版,2014,31(2):187-192.
更新日期/Last Update: 2014-03-20