[1]王斌,李健伟,卫亚东,等.石墨烯带正常-超导结的量子输运[J].深圳大学学报理工版,2014,31(2):111-118.[doi:10.3724/SP.J.1249.2014.02111]
 Wang Bin,Li Jianwei,Wei Yadong,et al.Quantum transport through normal-superconducting graphene nanoribbons[J].Journal of Shenzhen University Science and Engineering,2014,31(2):111-118.[doi:10.3724/SP.J.1249.2014.02111]
点击复制

石墨烯带正常-超导结的量子输运()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年第2期
页码:
111-118
栏目:
物理
出版日期:
2014-03-20

文章信息/Info

Title:
Quantum transport through normal-superconducting graphene nanoribbons
文章编号:
20140201
作者:
王斌1李健伟1卫亚东1王健2
1)深圳大学物理科学与技术学院,深圳大学计算凝聚态物理研究所,深圳 518060
2)香港大学物理系,香港
Author(s):
Wang Bin1 Li Jianwei1 Wei Yadong1 and Wang Jian2
1) College of Physics Science and Technology, Institute of Computational Condensed Matter Physics, Shenzhen University, Shenzhen 518060, P.R.China
2) Department of Physics, The University of Hong Kong, Hong Kong, P.R.China
关键词:
凝聚态物理石墨烯带正常-超导结Andreev反射非平衡格林函数密度泛函理论
Keywords:
condensed matter physics graphene nanoribbon normal-superconducting junction Andreev reflection non-equilibrium Green’s function (NEGF) density functional theory (DFT)
分类号:
O 469
DOI:
10.3724/SP.J.1249.2014.02111
文献标志码:
A
摘要:
基于非平衡格林函数(non-equilibrium Green’s function, NEGF)和密度泛函理论(density functional theory, DFT),从第一性原理出发研究Armchair型和Zigzag型的石墨烯带正常-超导结的电子输运性质,计算了缺陷对这两种正常-超导结输运性质的影响.计算表明,对无缺陷正常-超导石墨烯带,在超导能隙内,Andreev反射系数TA恰好等于正常石墨烯带的电子透射系数TN. 当石墨烯带存在缺陷时,Andreev反射系数TA不再是一个常数,而在超导能隙边缘出现两个尖锐的峰,其峰值大于正常系统的电子透射系数.在超导能隙之外,Andreev反射系数TA逐渐减小为0,准粒子的正常隧穿几率T1逐渐增大,且趋于无超导下的正常系统的电子透射系数TN. 不同缺陷构型对石墨烯带中载流子的输运过程影响不同.如果缺陷的存在对正常石墨烯带电子散射过程影响越大,则其对正常-超导体系中的Andreev反射和准粒子散射影响也越大.
Abstract:
The first principles calculation has been carried out to investigate the quantum transport properties of normal-superconducting graphene nanoribbons (GNRs) within the combination of non-equilibrium Green’s function (NEGF) and density functional theory (DFT). The Andreev reflection coefficient TA and quasi-particle transmission probability T1 of normal-superconducting system of a series of defective configurations were investigated in detail.As a comparison, the electric transmission coefficient TN of normal system was also calculated. In the pristine graphene nanoribbons, The Andreev reflection coefficient TA is a constant and exactly equals to electric transmission coefficient TN of the normal system in the superconducting energy gap, which indicates that the Andreev conductance is twice of the normal electric conductance. In the defective configurations of graphene nanoribbons, TA shows two sharp peaks at E=±Δ, and the peak values are larger than the electric conductance of normal system.Outside the superconducting energy gap, Andreev conductance decays to zero, and quasi-particle transmission probability increases to the normal electric transmission coefficient gradually. Different defective configurations give different influence to the Andreev reflection of the normal-superconducting graphene nanoribbons.

参考文献/References:

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J].Science, 2004,306(5696):666-669.
[2] Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional gas of massless dirac fermions in graphene[J].Nature,2005,438(10):197-200.
[3] Zhang Yuanbo,Tan Yanwen,Stormer H L,et al.Experimental observation of the quantum hall effect and Berry’s phase in grapheme[J].Nature,2005, 438(10):201-204.
[4] Katsnelson M I,Novoselov K S,Geim A K.Chiral tunnelling and the Klein paradox in grapheme[J].Nature Physics,2006,2(10):620-625.
[5] Song H S,Li S L,Miyazaki H,et al.Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition[J].Scientific Reports,2012,2(337):1-6.
[6] Wang Zi, Guo Hong, Bevan K H. First principles modeling of disorder scattering in graphene[J].Journal of Computational Electronics, 2013, 12(2):104-114.
[7] Ugeda M M,Brihuega I,Hiebel F,et al.Electronic and structural characterization of divacancies in irradiated graphene[J].Physical Review B,2012,85(12):121402-1-121402-5.
[8] Chen Zhihong,Lin YuMing,Michael J,et al.Graphene nano-ribbon electronics[J].Physica E,2007,40(2): 228-232.
[9] Wang Bin , Wang Jian, Guo Hong. Ab initio calculation of transverse spin current in graphene nanostructures[J].Physics Review B, 2009, 79(16): 165417-1-165417-5.
[10] Wan Langhui, Yu Yunjin, Wang Bin. Spin filter of graphene nanoribbon based structure[J]. Chinese Physics Letters, 2010, 27(8): 087205-1-087205-4.
[11] Yu Yunjin, Wei Yadong, Wan Langhui. Ab initio study of carbon chain parametric pump[J].Journal of Shenzhen University Science and Engineering, 2007, 24(3):313-316.(in Chinese)
余陨金,卫亚东,万浪辉. 碳链参数泵的从头计算[J].深圳大学学报理工版, 2007,24(3):313-316.
[12] Wan Langhui, Wang Bin, Wei Yadong. Nonlinear thermoelectric transport of carbon nanotube[J].Journal of Shenzhen University Science and Engineering, 2009, 26(4):356-359.(in Chinese)
万浪辉, 王斌,卫亚东. 纳米碳管的非线性热电输运[J].深圳大学学报理工版, 2009, 26(4):356-359.
[13] Amorim R G,Fazzio A,Antonelli A,et al.Divacancies in graphene and carbon nanotubes[J].Nano Letters, 2007,7(8):2459-2462.
[14] Kim Y,Ihm J,Yoon E,et al.Dynamics and stability of divacancy defects in graphene[J].Physics Review B, 2011,84(7):075445-1-075445-5.
[15] Wei Yadong, Wang Jian, Guo Hong, et al. Resonant Andreev reections in superconductor-carbon-nanotube devices[J].Physics Review B,2001,63(19):195412-1-195412-5.
[16] Wang Jian, Wei Yadong, Sun Qingfeng, et al. Nonlinear transport theory for hybrid normal-superconducting devices[J].Physics Review B,2001,64(10):104508-1-104508-5.
[17] Cheng Shuguang,Xing Yanxia,Wang Jian.Contro-llable andreev retroreflection and specular andreev reflection in a four-terminal graphene-superconductor hybrid system[J].Physics Review Letters,2009, 103(16):167003-1-167003-4.
[18] Sun Qingfeng,Xie Xiaoyi.Quantum transport through a graphene nanoribbon-superconductor junction[J].Journal of Physics:Condensed Matter, 2009, 21(34):344204-1-344204-9.
[19] Beenakker C W J.Specular andreev reflection in graphene[J].Physics Review Letters,2006,97(6):067007-1-067007-4.
[20] Mizuno N,Nielsen B,Xu Du.Suspended graphene ballistic josephson weak links[EB/OL].(2013-05-09)[2014-01-01]. http: //arxiv.org//abs/1305.2180.
[21] Cayssol J.Crossed andreev reflection in a graphene bipolar transistor[J].Physics Review Letters,2008,100(14):147001-1-147001-3.
[22] Stone A J,Wales D J.Theoretical studies of icosahedral C60 and some related species[J].Chemical Physics Letters, 1986,128(5/6):501-503.
[23] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physics Review B,1996, 54(16):11169-11186.
[24] Perdew J P,Wang Yue.One-dimensional extended lines of divacancy defects in graphene[J].Nanoscale,2011, 3(28):2868-2872.
[25] Taylor J,Guo Hong,Wang Jian.Ab initio modeling of quantum transport properties of molecular electronic devices[J].Physics Review B,2001,63(24):245407-1-245407-13.
[26] Sun Qingfeng,Wang Jian,Lin Tsunghan.Resonant Andreev reflection in a normal-metal-quantum-dot-superconductor system[J].Physics Review B,1999, 59(5):3831-3840.
[27] Wang Bin,Wei Yadong,Wang Jian.First-principles calculation of the andreev conductance of carbon wires[J].Physics Review B,2012,86(3):035414-1-035414-5.
[28] Gennes P G DE.Superconductivity of metals and alloys[M].New York: Westview Press,1999.
[29] Blonder G E, Tinkham M, Klapwijk T M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion[J]. Physical Review B, 1982, 25(7), 4515-4532.

相似文献/References:

[1]范平,郑壮豪,梁广兴,等.离子束溅射制备Bi2Te3热电薄膜[J].深圳大学学报理工版,2011,28(No.1(001-095)):84.
 FAN Ping,ZHENG Zhuang-hao,LIANG Guang-xing,et al.Preparation of Bi2Te3 thermoelectric thin films by ion beam sputtering[J].Journal of Shenzhen University Science and Engineering,2011,28(2):84.
[2]赵华,李华艳,周晓凡.自旋轨道耦合对超冷排斥费米气体相变的影响[J].深圳大学学报理工版,2014,31(6):570.[doi:10.3724/SP.J.1249.2014.06570]
 Zhao Hua,Li Huayan,and Zhou Xiaofan.Effects of the spin-orbit coupling on the phase transition of ultra cold repulsive Fermi gases[J].Journal of Shenzhen University Science and Engineering,2014,31(2):570.[doi:10.3724/SP.J.1249.2014.06570]
[3]乔振华,任亚飞.石墨烯中量子反常霍尔效应研究进展[J].深圳大学学报理工版,2014,31(6):551.[doi:10.3724/SP.J.1249.2014.06551]
 Qiao Zhenhua and Ren Yafei.Recent progress on quantum anomalous Hall effect in graphene[J].Journal of Shenzhen University Science and Engineering,2014,31(2):551.[doi:10.3724/SP.J.1249.2014.06551]
[4]罗景庭,钟鑫,朱茂东,等.ZnO薄膜生长及声表面波性能研究[J].深圳大学学报理工版,2015,32(1):17.[doi:10.3724/SP.J.1249.2015.01017]
 Luo Jingting,Zhong Xin,Zhu Maodong,et al.Growth of ZnO thin film and its surface acoustic wave properties[J].Journal of Shenzhen University Science and Engineering,2015,32(2):17.[doi:10.3724/SP.J.1249.2015.01017]
[5]张云波,王丽敏,王利.两全同粒子在一维光晶格中的量子行走[J].深圳大学学报理工版,2015,32(1):1.[doi:10.3724/SP.J.1249.2015.01001]
 Zhang Yunbo,Wang Limin,and Wang Li.Quantum walks of two identical particles in one-dimensional lattices[J].Journal of Shenzhen University Science and Engineering,2015,32(2):1.[doi:10.3724/SP.J.1249.2015.01001]
[6]牛青,李岩,李卫东.马赫-曾德尔干涉仪中位相测量系统的误差分析[J].深圳大学学报理工版,2015,32(3):306.[doi:10.3724/SP.J.1249.2015.0327]
 Niu Qing,Li Yan,and Li Weidong.Systematic error analysis for phase measurement with the Mach-Zehnder interferometer[J].Journal of Shenzhen University Science and Engineering,2015,32(2):306.[doi:10.3724/SP.J.1249.2015.0327]
[7]张龙,万浪辉,许富明,等.黑磷纳米带电子结构的调控[J].深圳大学学报理工版,2015,32(4):343.[doi:10.3724/SP.J.1249.2015.04343]
 Zhang Long,Wan Langhui,Xu Fuming,et al.Modulation of electronic structure of phosphorene nanoribbon[J].Journal of Shenzhen University Science and Engineering,2015,32(2):343.[doi:10.3724/SP.J.1249.2015.04343]
[8]郭飞翔,周晓凡,赵华.梯状光晶格中自旋轨道耦合的排斥费米气体[J].深圳大学学报理工版,2015,32(5):449.[doi:10.3724/SP.J.1249.2015.05449]
 Guo Feixiang,Zhou Xiaofan,and Zhao Hua.Spin-orbit coupled Fermi atoms loaded in an optical ladder lattice[J].Journal of Shenzhen University Science and Engineering,2015,32(2):449.[doi:10.3724/SP.J.1249.2015.05449]
[9]张东平,朱茂东,杨凯,等.氧分压对磁控溅射VO2薄膜相变性能的影响[J].深圳大学学报理工版,2015,32(6):645.[doi:10.3724/SP.J.1249.2015.06645]
 Zhang Dongping,Zhu Maodong,Yang Kai,et al.Influence of oxygen partial pressure on phase transition characteristics of VO2 thin films prepared by magnetron sputtering[J].Journal of Shenzhen University Science and Engineering,2015,32(2):645.[doi:10.3724/SP.J.1249.2015.06645]
[10]洪盛熙,邓文基,刘军丰.类石墨烯材料中应力调制的量子泵浦效应[J].深圳大学学报理工版,2016,33(4):352.[doi:10.3724/SP.J.1249.2016.04352]
 Hong Shengxi,Deng Wenji,et al.Quantum pumping in strain modulated graphene-like materials[J].Journal of Shenzhen University Science and Engineering,2016,33(2):352.[doi:10.3724/SP.J.1249.2016.04352]

备注/Memo

备注/Memo:
Received:2014-01-15;Accepted:2014-02-11
Foundation:National Natural Science Foundation of China (11304205, 11374246)
Corresponding author:Professor Wei Yadong, E-mail: ywei@szu.edu.cn
Citation:Wang Bin,Li Jianwei,Wei Yadong, et al. Quantum transport through normal-superconducting graphene nanoribbons[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(2): 111-118.(in Chinese)
基金项目:国家自然科学基金资助项目(11304205,11374246)
作者简介:王斌(1980-),男(汉族),广东省深圳市人,深圳大学副教授、博士. E-mail:binwang@szu.edu.cn
引文:王斌,李健伟,卫亚东,等. 石墨烯带正常-超导结的量子输运[J]. 深圳大学学报理工版,2014,31(2):111-118.
更新日期/Last Update: 2014-03-19