参考文献/References:
[1] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1):73-75.
[2] Couairon A, Mysyrowicz A. Femtosecond filamention in transparent media [J]. Physics Reports, 2007, 441(2/3/4): 47-189.
[3] Chin S L, Hosseini S A, Liu W, et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges[J]. Canadian Journal of Physics, 2005, 83(9): 863-905.
[4] Bergé L, Skupin S, Nuter R, et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on Progress in Physics, 2007, 70(10): 1633-1713.
[5] Rodriguez M, Bourayou R, Méjean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 2004, 69(3): 036607-1-036607-7.
[6] Stelmaszczyk K, Rohwetter P, Mejean G, et al. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air[J]. Applied Physics Letters, 2004,85(18): 3977-3979.
[7] Chin S L, Petit S, Borne F, et al. The white light supercontinuum is indeed an ultrafast white light laser[J]. Japanese Journal of Applied Physics, 1999,38(2A): L126-L128.
[8] Faccio D, Trapani P D, Minardi S, et al. Far-field spectral characterization of conical emission and filamentation in Kerr media[J]. Journal of Optical Society of America B, 2005,22(4): 862-869.
[9] Tzortzakis S, Prade B, Franco M, et al. Femtosecond laser-guided electric discharge in air[J]. Physical Review E, 2001,64(5): 057401-1-057401-5.
[10] Forestier B, Houard A, Revel I, et al. Triggering, guiding and deviation of long air spark discharges with femtosecond laser filament[J]. AIP Advances, 2012, 2(1): 012151-1-012151-13.
[11] Dogariu A, Michael J B, Scully M O, et al. High-gain backward lasing in air[J]. Science, 2011,331(6016): 442-445.
[12] Luo Q, Liu W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied Physics B, 2003,76(3): 337-340.
[13] Kasparian J, Rodriguez M, Méjean G, et al. White-light filaments for atmospheric analysis[J]. Science, 2003,301(5629): 61-64.
[14] Guandalini A, Eckle P, Anscombe M, et al. 5.1 fs pulses generated by filamentation and carrier envelope phase stability analysis[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(13): S257-S264.
[15] Ghotbi M, Trabs P, Beutler M. Generation of high-energy, sub-20-fs pulses in the deep ultraviolet by using spectral broadening during filamentation in argon[J]. Optics Letters, 2011, 36(4): 463-465.
[16] Winterfeldt C, Spielmann C, Gerber G. Colloquium: optimal control of high-harmonic generation[J]. Reviews of Modern Physics, 2008, 80(1): 117-140.
[17] Zeng B, Chu W, Li G, et al. Direct generation of intense extreme-ultraviolet supercontinuum with 35-fs, 11-mJ pulses from a femtosecond laser amplifier[J]. Physical Review A,2012,85(3): 033839-1-033839-4.
[18] Steingrube D S, Schulz E, Binhammer T, et al. Generation of high-order harmonics with ultra-short pulses from filamentation[J]. Optics Express, 2009, 17(18): 16177-16182.
[19] Bertrand J B, Wrner H J, Salières P, et al. Linked attosecond phase interferometry for molecular frame measurements[J]. Nature Physics, 2013, 9: 174-178.
[20] Haessler S, Caillat J, Boutu W, et al. Attosecond imaging of molecular electronic wavepackets [J]. Nature Physics, 2010, 6: 200-206.
[21] Shafir D, Soifer H, Bruner B D, et al. Resolving the time when an electron exits a tunnelling barrier[J]. Nature, 2012, 485(7398): 343-346.
[22] Niikura H, Légaré F, Hasbani R, et al. Sub-laser-cycle electron pulses for probing molecular dynamics[J]. Nature, 2002, 417: 917-922.
[23] Stapelfeldt H, Seideman T. Colloquium: aligning molecules with strong laser pulses[J]. Reviews of Modern Physics, 2003, 75(2): 543-557.
[24] Rohwetter P, Kasparian J, Stelmaszczyk K, et al. Laser-induced water condensation in air[J]. Nature Photonics, 2010, 4: 451-456.
[25] Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Physical Review Letter, 1964, 13(15): 479-482.
[26] Kelley P L. Self-focusing of optical beams[J]. Physical Review Letter, 1965, 15(26): 1005-1008.
[27] Chin S L, Lambropoulos P. Multiphoton Ionization of Atoms[M]. Toronto(Canada): Academic, 1984.
[28] Keldysh L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 1965, 20(5): 1307-1314.
[29] Feit M D, Fleck J A. Effect of refraction on spot-size dependence of laser-induced breakdown[J]. Applied Physics Letters, 1974, 24(4): 169-172.
[30] Wang C, Fu Y, Zhou Z, et al. Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water[J]. Applied Physics Letters, 2007, 90(18): 181119-1-181119-3.
[31] Kartashov D, Aliauskas S, Puglys A, et al. White light generation over three octaves by femtosecond filament at 3.9 μm in argon[J]. Optics Letters, 2012, 37(16): 3456-3458.
[32] Liu W, Petit S, Becker A, et al. Intensity clamping of a femtosecond laser pulse in condensed matter[J]. Optics Communications, 2002, 202(1/2/3): 189-197.
[33] Becker A, Akzbek N, Vijayalakshmi K, et al. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas[J]. Applied Physics B, 2001, 73(3): 287-290.
[34] Nibbering E T J, Curley P F, Grillon G, et al. Conical emission from self-guided femtosecond pulses in air[J]. Optics Letters,1996,21(1): 62-64.
[35] Kosareva O G, Kandidov V P, Brodeur A, et al. Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air[J]. Optics Letters, 1997, 22(17): 1332-1334.
[36] Chin S L, Brodeur A, Petit S, et al. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media[J]. Journal of Nonlinear Optical Physics & Materials, 1999, 8(1): 121-146.
[37] Loriot V, Hertz E, Faucher O, et al. Measurement of high order Kerr refractive index of major air components[J]. Optics Express, 2009, 17(16): 13429-13434.
[38] Loriot V, Hertz E, Faucher O, et al. Measurement of high order Kerr refractive index of major air components: erratum[J]. Optics Express, 2010, 18(3): 3011-3012.
[39] Yao J, Zeng B, Xu H, et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical Review A, 2011, 84(5): 051802-1-051802-5.
[40] Chu W, Zeng B, Yao J, et al. Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses[J]. Europhysics Letters, 2012, 97(6): 64004-p1-64004-p5.
[41] Ni J, Chu W, Zhang H, et al. Harmonic-seeded remote laser emissions in N2-Ar, N2-Xe and N2-Ne mixtures: a comparative study[J]. Optics Express, 2012, 20(19): 20970-20979.
[42] Yao J, Li G, Jing C, et al. Remote creation of coherent emissions in air with two-color ultrafast laser pulses[J]. New Journal Physics, 2013, 15: 023046-1-023046-10.
[43] Ni J, Chu W, Jing C, et al. Identification of the physical mechanism of generation of coherent N2+ emissions in air by femtosecond laser excitation[J]. Optics Express, 2013, 21(7): 8746-8752.
[44] Chin S L. Femtosecond Laser Filamentation[M]. New York: Springer Science+Business Media, 2010.
[45] Seideman T, Hamilton E. Nonadiabatic alignment by intense pulses. concepts, theory, and directions[J]. Advances In Atomic, Molecular, and Optical Physics, 2006, 52: 289-329.
[46] Poulsen M D, Péronne E, Stapelfeldt H, et al. Nonadiabatic alignment of asymmetric top molecules: Rotational revivals[J]. The Journal of Chemical Physics, 2004, 121(2): 783-791.
[47] Chen Y H, Varma S, York A, et al. Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H2, D2, N2, O2, and N2O[J]. Optics Express, 2007, 15(18): 11341-11357.
[48] Calegari F, Vozzi C, Stagira S. Optical propagation in molecular gases undergoing filamentation-assisted field-free alignment[J]. Physical Review A, 2009, 79(2): 023827-1-023827-10.
[49] Varma S, Chen Y H, Milchberg H M. Quantum molecular lensing of femtosecond laser optical/plasma filaments[J]. Physics of Plasmas, 2009, 16: 056702-1-056702-6.
[50] Béjot P, Kasparian J, Henin S, et al. Higher-order Kerr terms allow lonization-free filamentation in gases[J]. Physical Review Letters, 2010, 104(10): 103903-1-103903-4.
[51] Kolesik M, Mirell D, Diels J C, et al. On the higher-order Kerr effect in femtosecond filaments[J]. Optics Letters, 2010, 35(21): 3685-3687.
[52] Kolesik M, Wright E M, Moloney J V. Femtosecond filamentation in air and higher-order nonlinearities[J]. Optics Letters, 2010, 35(15): 2550-2552.
[53] Morales F, Richter M, Patchkovskii S, et al. Imaging the Kramers-Henneberger atom[J]. Proceeding of the National Academy of Sciences of the United States of America, 2011, 108(41): 16906-16911.
[54] Béjot P, Hertz E, Lavorel B, et al. From higher-order Kerr nonlinearities to quantitative modeling of third and fifth harmonic generation in argon[J]. Optics Letters, 2011, 36(6): 828-830.
[55] Béjot P, Kasparian J. Conical emission from laser filaments and higher-order Kerr effect in air[J]. Optics Letters, 2011, 36(24): 4812-4814.
[56] Brée C, Demircan A, Steinmeyer G. Saturation of the all-optical Kerr effect[J]. Physical Review Letters, 2011, 106(18): 183902-1-183902-4.
[57] Béjot P, Hertz E, Kasparian J, et al. Transition from Plasma-driven to Kerr-driven laser filamentation[J]. Physical Review Letters, 2011, 106(24): 243902-1-243902-4.
[58] Polynkin P, Kolesik M, Wright E M, et al. Experimental tests of the new paradigm for laser filamentation in gases[J]. Physical Review Letters, 2011, 106(15): 153902-1-153902-4.
[59] Kosareva O, Daigle J F, Panov N, et al. Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing? [J]. Optics Letters, 2011, 36(7): 1035-1037.
[60] Brown J M, Wright E M, Moloney J V, et al. On the relative roles of higher-order nonlinearity and ionization in ultrafast light-matter interactions[J]. Optics Letters, 2011, 37(10): 1604-1606.
[61] Wahlstrand J K, Cheng Y H, Chen Y H, et al. Optical nonlinearity in Ar and N2 near the ionization threshold[J]. Physical Review Letters, 2011, 107(10): 103901-1-103901-5.
[62] Wahlstrand J K, Milchberg H M. Effect of a plasma grating on pump-probe experiments near the ionization threshold in gases[J]. Optics Letters, 2011, 36(19): 3822-3824.
[63] Odhner J H, Romanov D A, McCole E T, et al. Ionization-grating-induced nonlinear phase accumulation in spectrally resolved transient birefringence measurements at 400 nm[J]. Physical Review Letters, 2012, 109(6): 065003-1-065003-5.
[64] Ni J, Yao J, Zeng B, et al. Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses[J]. Physical Review A, 2011, 84(6): 063846-1-063846-4.
[65] Xu H L, Chin S L. Femtosecond laser filamentation for atmospheric sensing[J]. Sensors, 2011, 11(1): 32-53.
[66] Xu H L, Daigle J F, Luo Q, et al. Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane[J]. Applied Physics B, 2006, 82(4): 655-658.
[67] Xu H L, Kamali Y, Marceau C, et al. Simultaneous detection and identification of multigas pollutants using filament-induced nonlinear spectroscopy[J]. Applied Physics Letters, 2007, 90(10): 101106-1-101106-3.
[68] Luo Q, Xu H L, Hosseini S A, et al. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy[J]. Applied Physics B, 2006, 82(1): 105-109.
[69] Xu H L, Liu W, Chin S L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials[J]. Optics Letters, 2006, 31(10): 1541-1542.
[70] Xu H L, Bernhardt J, Mathieu P, et al. Understanding the advantage of remote femtosecond laser-induced breakdown spectroscopy of metallic targets[J]. Journal of Applied Physics, 2007, 101(3): 033124-1-033124-6.
[71] Shneider M N, Baltuka A, Zheltikov A M. Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization[J]. Journal of Applied Physics, 2011, 110(8): 083112-1-083112-7.
[72] Peano J, Sprangle P, Hafizi B, et al. Remote lasing in air by recombination and electron impact excitation of molecular nitrogen[J]. Journal of Applied Physics, 2012, 111(3): 033105-1-033105-8.
[73] Hemmer P R, Miles R B, Polynkin P, et al. Standoff spectroscopy via remote generation of a backward-propagating laser beam[J]. Proceeding of the National Academy of Sciences of the United States of America, 2011, 108(8): 3130-3134.
[74] Fu Y, Xiong H, Xu H, et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate[J]. Optics Letters, 2009, 34(23): 3752-3754.
[75] Polynkin P, Kolesik M, Moloney J V, et al. Curved plasma channel generation using ultraintense airy beams[J]. Science, 2009, 324(5924): 229-232.
[76] Polynkin P, Kolesik M, Moloney J. Filamentation of femtosecond laser airy beams in water[J]. Physical Review Letters, 2009, 103(12): 123902-1-123902-4.
[77] Polesana P, Franco M, Couairon A, et al. Filamentation in Kerr media from pulsed Bessel beams[J]. Physical Review A, 2008, 77(4): 043814-1-043814-11.
[78] Neshev D N, Dreischuh A, Maleshkov G, et al. Supercontinuum generation with optical vortices[J]. Optics Express, 2010, 18(17): 18368-18373.
[79] Liu Y, Brelet Y, He Z, et al. Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics[J]. Physical Review Letters, 2013, 110(9): 097601-1-097601-5.
[80] Silva F, Austin D R, Thai A, et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal[J]. Nature Communications, 2012, 3: 807-1-807-5.
[81] Wang Z, Liu J, Li R, et al. Wavefront control to generate ultraviolet supercontinuum by filamentation of few-cycle laser pulses in argon[J]. Optics Letters, 2010, 35(2): 163-165.
[82] Théberge F, Liu W, Simard P T, et al. Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing[J]. Physical Review E, 2006, 74(3): 036406-1-036406-7.
[83] Zeng B, Chu W, Gao H, et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses[J]. Physical Review A, 2011, 84(6): 063819-1-063819-7.
[84] Zhu G, Howe J, Durst M, et al. Simultaneous spatial and temporal focusing of femtosecond pulses[J]. Optics Express, 2005, 13(6): 2153-2159.
[85] Oron D, Tal E, Silberberg Y. Scanningless depth-resolved microscopy[J]. Optics Express, 2005, 13(5): 1468-1476.
[86] Oron D, Silberberg Y. Harmonic generation with temporally focused ultrashort pulses[J]. Journal of the Optical Society of America B, 2005, 22(12): 2660-2663.
相似文献/References:
[1]郑国梁,欧阳征标,徐世祥.吸收对准相位匹配线性电光效应的影响[J].深圳大学学报理工版,2010,27(2):152.
ZHENG Guo-liang,OUYANG Zheng-biao,and XU Shi-xiang.The effect of absorption on the quasi-phase-matched linear electro-optic effect[J].Journal of Shenzhen University Science and Engineering,2010,27(1):152.
[2]夏林中,苏红,管明祥,等.温度调谐的周期极化掺氧化镁铌酸锂振荡器[J].深圳大学学报理工版,2011,28(No.5(377-470)):405.
XIA Lin-zhong,SU Hong,GUAN Ming-xiang,et al.Temperature tunable optical parametric oscillator based on MgO-doped PPLN[J].Journal of Shenzhen University Science and Engineering,2011,28(1):405.
[3]屈军乐,陈丹妮,杨建军,等.二次谐波成像及其在生物医学中的应用[J].深圳大学学报理工版,2006,23(1):1.
QU Jun-le,CHEN Dan-ni,YANG Jian-jun,et al. Second harmonic generation imaging and its applications in biomedicine[J].Journal of Shenzhen University Science and Engineering,2006,23(1):1.
[4]郝中华,刘劲松.高斯光束在光伏光折变晶体中的孤波演化[J].深圳大学学报理工版,2001,18(1):15.
HAO Zhong-hua,LIU Jin-song.Solitary Evolution of Gaussian Beam in Photovoltaic-photorefractive Crystal[J].Journal of Shenzhen University Science and Engineering,2001,18(1):15.
[5]龙井华,阮双琛,巨养锋,等.新型超短光脉冲测量技术[J].深圳大学学报理工版,2001,18(4):46.
LONG Jing-hua,RUAN Shuang-chen,JU Yang-feng and Zhu Qin.New Techniques for Measuring the Ultrashort Optical Pulses[J].Journal of Shenzhen University Science and Engineering,2001,18(1):46.
[6]李云亭,张明江,刘毅,等.动态噪声差分算法实现拉曼测温仪高精度检测[J].深圳大学学报理工版,2017,34(1):20.[doi:10.3724/SP.J.1249.2017.01020]
Li Yunting,Zhang Mingjiang,et al.High precision measurement for Raman distributed temperature sensor by dynamic noise difference algorithm[J].Journal of Shenzhen University Science and Engineering,2017,34(1):20.[doi:10.3724/SP.J.1249.2017.01020]
[7]刘伟,刘双龙,陈丹妮,等.CARS显微成像系统的空间分辨率标定[J].深圳大学学报理工版,2017,34(3):272.[doi:10.3724/SP.J.1249.2017.03272]
Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(1):272.[doi:10.3724/SP.J.1249.2017.03272]
[8]杨帅军,张建忠,刘毅,等.面向混沌激光器的高精度温控与驱动电路设计[J].深圳大学学报理工版,2018,35(5):495.[doi:10.3724/SP.J.1249.2018.05495]
YANG Shuaijun,ZHANG Jianzhong,LIU Yi,et al.Design of precise temperature controller and current driver for chaotic laser[J].Journal of Shenzhen University Science and Engineering,2018,35(1):495.[doi:10.3724/SP.J.1249.2018.05495]
[9]刘强,王琼,欧阳征标.基于混合微腔的高效率太赫兹波产生[J].深圳大学学报理工版,2019,36(2):140.[doi:10.3724/SP.J.1249.2019.02140]
LIU Qiang,WANG Qiong,et al.Efficient terahertz wave generation based on hybrid micro-cavity[J].Journal of Shenzhen University Science and Engineering,2019,36(1):140.[doi:10.3724/SP.J.1249.2019.02140]
[10]李绍和,李九生,孙建忠.太赫兹频率编码器[J].深圳大学学报理工版,2019,36(2):162.[doi:10.3724/SP.J.1249.2019.02162]
LI Shaohe,LI Jiusheng,and SUN Jianzhong.Terahertz frequency coding metasurface[J].Journal of Shenzhen University Science and Engineering,2019,36(1):162.[doi:10.3724/SP.J.1249.2019.02162]