[1]闫培光,李会权,张格霖,等.全固光子带隙光纤滤波1 126 nm掺镱光纤激光器[J].深圳大学学报理工版,2013,30(No.4(331-440)):432-436.[doi:10.3724/SP.J.1249.2013.04432]
 Yan Peiguang,Li Huiquan,Zhang Gelin,et al.1 126 nm ytterbium-doped fiber laser combining all-solid photonic bandgap fiber[J].Journal of Shenzhen University Science and Engineering,2013,30(No.4(331-440)):432-436.[doi:10.3724/SP.J.1249.2013.04432]
点击复制

全固光子带隙光纤滤波1 126 nm掺镱光纤激光器()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.4(331-440)
页码:
432-436
栏目:
光电工程
出版日期:
2013-07-12

文章信息/Info

Title:
1 126 nm ytterbium-doped fiber laser combining all-solid photonic bandgap fiber
文章编号:
20130415
作者:
闫培光李会权张格霖黄诗盛林荣勇
深圳大学激光工程重点实验室,深圳 518060
Author(s):
Yan Peiguang Li Huiquan Zhang Gelin Huang Shisheng and Lin Rongyong
Shenzhen Key Laboratory of Laser Engineering, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
光电子与激光技术全固光子带隙光纤光纤激光器掺镱光纤移频激光器全光纤化
Keywords:
optoelectronic and laser technology all solid photonic bandgap fiber optical fiber laser ytterbium-doped fiber frequency shifting fiber laser all fiber laser
分类号:
TN 248
DOI:
10.3724/SP.J.1249.2013.04432
文献标志码:
A
摘要:
利用全固光子带隙光纤(all-solid photonic bandgap fiber, AS-PBGF),以及光纤光栅对组成谐振腔强制选频,得到输出波长为1 126 nm、输出功率为1.81 mW的全光纤化掺镱光纤移频激光器. AS-PBGF的禁带介于1 030~1 124 nm,恰好可压制掺镱光纤的常规强增益波段. 介于禁带范围的放大自发辐射得到很好压制,输出激光高于残余辐射近50 dB.
Abstract:
Although the ytterbium-doped fiber has large emitting spectral region, the conventional ytterbium-doped fiber laser usually operates at around 1 060 nm. However, it is of significance to build a frequency-shifted laser operating at a novel wavelength. In our frequency-shifted fiber laser cavity, we introduced an all-solid photonic bandgap fiber with a forbidden gap between 1 030-1 124 nm as filter and a pair of fiber Bragg gratings at 1 126 nm as reflector, and achieved an lasing output at 1 126 nm. The output power was 1.81 mW. Due to a strong suppression between 1 030-1 124 nm, the lasing signal was about 50 dB higher than the amplified spontaneous emission.

参考文献/References:

[1] Ren Y, Chen F, Vázquez De Aldana J R. Near-infrared lasers and self-frequency-doubling in Nd: YCOB cladding waveguides[J]. Optics Express, 2013, 21(9): 11562-11567.
[2] Montoya E, Capmany J, Bausá L E, et al. Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3∶MgO[J]. Applied Physics Letters, 1999, 74(21): 3113-3115.
[3] Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers[J]. Laser Physics Letters, 2007, 4(2): 93-102.
[4] Balslev S, Mironov A, Nilsson D, et al. Micro-fabricated single mode polymer dye laser[J]. Optics Express, 2006, 14(6): 2170-2177.
[5] Chen Y F, Chen Y S, Tsai S W. Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP[J]. Applied Physics B, 2004, 79(2): 207-210.
[6] Bienfang J C, Denman C A, Grime B W, et al. 20W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers[J]. Optics Letters, 2003, 28(22): 2219-2221.
[7] Janousek J, Johansson S, Tidemand-Lichtenberg P, et al. Efficient all solid-state continuous-wave yellow-orange light source[J]. Optics Express, 2005, 13(4): 1188-1192.
[8] Sinha S, Langrock C, Digonnet M J, et al. Efficient yellow-light generation by frequency doubling a narrow-linewidth 1 150 nm ytterbium fiber oscillator[J]. Optics Letters,2006, 31(3): 347-349.
[9] Kurkov A S, Paramonov V M, Medvedkov O I. Ytterbium fiber laser emitting at 1160 nm[J]. Laser Physics Letters, 2006, 3(10): 503-506.
[10] Ota J, Shirakawa A, Ueda K. High-power Yb-doped double-clad fiber laser directly operating at 1178 nm[C]// Pacific Rim Conference on Lasers and Electro-Optics. Tokyo(Japan): IEEE Press, 2005: 414-415.
[11] Wang Jianhua, Zhang Lei, Zhou Jun, et al. High power linearly polarized Raman fiber laser at 1 120 nm[J]. Chinese Optics Letters, 2012, 10(2): 21406-1-021406-3.
[12] Shubin A V, Bufetov I A, Melkumov M A, et al. Bismuth-doped silica-based fiber lasers operating between 1 389 and 1 538 nm with output power of up to 22 W[J]. Optics Letters, 2012, 37(13): 2589-2591.
[13] Dianov E M, Shubin A V, Melkumov M A, et al. High-power cw bismuth-fiber lasers[J]. Journal of the Optical Society of America B, 2007, 24(8): 1749-1755.
[14] Razdobreev I, El Hamzaoui H, Bigot L, et al. Optical properties of Bismuth-doped silica core photonic crystal fiber[J]. Optics Express, 2010, 18(19): 19479-19484.
[15] Fan X, Chen M, Shirakawa A, et al. High power Yb-doped photonic bandgap fiber oscillator at 1 178 nm[J]. Optics Express, 2012, 20(13): 14471-14476.
[16] Shirakawa A, Olausson C B, Maruyama H, et al. High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology[J]. Optical Fiber Technology, 2010, 16(6): 449-457.
[17] Février S, Gaponov D D, Roy P, et al. High-power photonic-bandgap fiber laser[J]. Optics Letters, 2008, 33(9): 989-991.
[18] Shirakawa A, Maruyama H, Ueda K, et al. High-power Yb-doped photonic bandgap fiber amplifier at 1 150-1 200 nm[J]. Optics Express, 2009, 17(2): 447-454.
[19] Kashiwagi M, Takenaga K, Ichii K, et al. Over 10 W output linearly-polarized single-stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber[J]. IEEE Journal of Quantum Electronics, 2011, 47(8): 1136-1141.
[20] Chen M, Shirakawa A, Fan X, et al. Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm[J]. Optics Express, 2012, 20(19): 21044-21052.
[21] Pureur V, Bigot L, Bouwmans G, et al. Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm[J]. Applied Physics Letters, 2008, 92(6): 61113-1-61113-3.
[22] Yan Peiguang, Zhao Jian, Ruan Shuangchen, et al. Drawing an ultra-low loss all-solid photonic bangap fiber for ytterbium ASE suppression[J]. Microwave and Optical Technology Letters, 2010, 52(12): 2629-2632.

相似文献/References:

[1]郭媛,阮双琛.含空气小孔芯光子晶体光纤的色散特性研究[J].深圳大学学报理工版,2010,27(4):386.
 GUO Yuan and RUAN Shuang-chen.Analysis on the dispersion properties of photonic crystal fiber with an air-hole defect core[J].Journal of Shenzhen University Science and Engineering,2010,27(No.4(331-440)):386.
[2]郭春雨,阮双琛,陈祖聪,等.18.4 W皮秒光纤激光器及其全光纤化超连续谱源[J].深圳大学学报理工版,2011,28(No.3(189-282)):218.
 GUO Chun-yu,RUAN Shuang-chen,CHEN Zu-cong,et al.An all-fiber supercontinuum source pumped with a 18.4 W picosecond fiber laser[J].Journal of Shenzhen University Science and Engineering,2011,28(No.4(331-440)):218.
[3]阮双琛,闫培光,郭春雨,等.光子晶体光纤超连续谱光源[J].深圳大学学报理工版,2011,28(No.4(283-376)):295.
 RUAN Shuang-chen,YAN Pei-guang,GUO Chun-yu,et al.Photonic crystal fiber supercontinuum source[J].Journal of Shenzhen University Science and Engineering,2011,28(No.4(331-440)):295.
[4]成建群,阮双琛,郭春雨,等.窄线宽掺铒光子晶体光纤激光器[J].深圳大学学报理工版,2011,28(No.5(377-470)):400.
 CHENG Jian-qun,RUAN Shuang-chen,GUO Chun-yu,et al.Narrow linewidth Erbium-doped photonic crystal fiber laser[J].Journal of Shenzhen University Science and Engineering,2011,28(No.4(331-440)):400.
[5]房鸿,马瑞龙,成建群,等.纳秒脉冲泵浦光子晶体光纤产生超连续谱[J].深圳大学学报理工版,2011,28(No.6(471-564)):523.
 FANG Hong,MA Rui-long,CHENG Jian-qun,et al.Supercontinuum generation in a photonic crystal fiber pumped by nanosecond pulses[J].Journal of Shenzhen University Science and Engineering,2011,28(No.4(331-440)):523.
[6]杜戈果,张灵聪,赵俊清,等.主动调Q掺铥双包层光纤激光器[J].深圳大学学报理工版,2012,29(No.5(377-470)):417.[doi:10.3724/SP.J.1249.2012.05417]
 DU Ge-guo,ZHANG Ling-cong,ZHAO Jun-qing,et al.Actively Q-switched thulium-doped double-clad fiber laser[J].Journal of Shenzhen University Science and Engineering,2012,29(No.4(331-440)):417.[doi:10.3724/SP.J.1249.2012.05417]
[7]房鸿,刘文礼,张敏,等.基于光子晶体光纤的多波长环形激光器[J].深圳大学学报理工版,2012,29(No.6(471-580)):482.[doi:10.3724/SP.J.1249.2012.06482]
 FANG Hong,LIU Wen-li,ZHANG Min,et al.Multiple-wavelength ring laser based on photonic crystal fiber[J].Journal of Shenzhen University Science and Engineering,2012,29(No.4(331-440)):482.[doi:10.3724/SP.J.1249.2012.06482]
[8]邵英,庄飚,钱美.双折射效应和去直流检测法的MOCT模型研究[J].深圳大学学报理工版,2013,30(No.3(221-330)):221.[doi:10.3724/SP.J.1249.2013.03221]
 Shao Ying,Zhuang Biao,and Qian Mei.Modeling research of magneto-optic current transformer based on birefringence effect and deleting DC double-light detection[J].Journal of Shenzhen University Science and Engineering,2013,30(No.4(331-440)):221.[doi:10.3724/SP.J.1249.2013.03221]
[9]郭春雨,林怀钦,阮双琛,等.连续波泵浦的高功率全光纤化超连续谱光源[J].深圳大学学报理工版,2013,30(No.4(331-440)):423.[doi:10.3724/SP.J.1249.2013.04423]
 Guo Chunyu,Lin Huaiqin,Ruan Shuangchen,et al.High-power all-fiber CW-pumped supercontinuum source[J].Journal of Shenzhen University Science and Engineering,2013,30(No.4(331-440)):423.[doi:10.3724/SP.J.1249.2013.04423]
[10]张敏,权润爱,苏红,等.光泵连续太赫兹波在生物成像中的应用研究(英文)[J].深圳大学学报理工版,2014,31(2):160.[doi:10.3724/SP.J.1249.2014.02160]
 Zhang Min,Quan Runai,Su Hong,et al.Investigation of optically pumped continuous terahertz laser in biological imaging[J].Journal of Shenzhen University Science and Engineering,2014,31(No.4(331-440)):160.[doi:10.3724/SP.J.1249.2014.02160]

备注/Memo

备注/Memo:
Received:2013-03-21;Accepted:2013-06-05
Foundation:National Natural Science Foundation of China (61007054, 61275144)
Corresponding author: Professor Yan Peiguang. E-mail: yanpg@szu.edu.cn
Citation:Yan Peiguang, Li Huiquan, Zhang Gelin, et al. 1 126 nm ytterbium-doped fiber laser combining all-solid photonic bandgap fiber[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(4): 432-436.(in Chinese)
基金项目:国家自然科学基金资助项目(61007054,61275144)
作者简介:闫培光(1977-),男(汉族),山东省潍坊市人,深圳大学教授. E-mail:yanpg@szu.edu.cn
引文:闫培光,李会权,张格霖,等. 全固光子带隙光纤滤波1 126 nm掺镱光纤激光器[J]. 深圳大学学报理工版,2013,30(4):432-436.
更新日期/Last Update: 2013-07-12