[1]朱安民,陈燕明.基于特征点一致性约束的实时目标跟踪算法[J].深圳大学学报理工版,2013,30(No.3(221-330)):228-234.[doi:10.3724/SP.J.1249.2013.03228]
 Zhu Anmin and Chen Yanming.A real-time target tracking algorithm based on the consistency constraint of feature points[J].Journal of Shenzhen University Science and Engineering,2013,30(No.3(221-330)):228-234.[doi:10.3724/SP.J.1249.2013.03228]
点击复制

基于特征点一致性约束的实时目标跟踪算法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.3(221-330)
页码:
228-234
栏目:
电子与信息科学
出版日期:
2013-05-19

文章信息/Info

Title:
A real-time target tracking algorithm based on the consistency constraint of feature points
文章编号:
20130302
作者:
朱安民 陈燕明
深圳大学计算机与软件学院,深圳 518060
Author(s):
Zhu Anmin and Chen Yanming
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060,P.R.China
关键词:
模式识别目标跟踪Lucase-Kanade光流法一致性约束动态选择随机采样
Keywords:
pattern recognitionobject tracking Lucase-Kanade optical flow methodconsistency constraintschoosing dynamicallyrandom sampling
分类号:
O 232
DOI:
10.3724/SP.J.1249.2013.03228
文献标志码:
A
摘要:
基于光流法建立特征点的目标模型和随机采样模型,实现平稳的运动目标跟踪.通过考虑特征点在速度和方向上的一致性约束,学习目标的稳定特征,保持目标模型的稳定性,从而获得稳定的跟踪轨迹.对存在光照变化,目标形变,部分遮挡,高速运动,尺度缩放、旋转,图片噪音、模糊等因素影响下的视频进行仿真对比.结果表明,该算法面对局部非刚体目标和变速运动目标均能达到很好的鲁棒性和实时性.
Abstract:
A novel Lucase-Kanade optical flow based method is proposed for the smooth tracking of moving objects.The proposal includes a target model and a random sampling model.By considering the consistency constraints in speed and direction and studying object stability,the proposed method establishes stable feature points for objects.Then,a stable tracking trajectory is achieved.Simulation experiences in comparison with traditional methods were conducted under the situations of illumination changes,target deformation,partial occlusion,high-speed motion,zoom scale,rotation,image noise,and fuzziness.The results show that the proposed method has better performance of robustness and real-time on many objects which include non-rigid and varying velocity running objects.

参考文献/References:

[1] HuuGiao Nguyen,Fablet R,Ehrhold A,et al.Keypoint-based analysis of sonar images:application to seabed recognition[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(4):1171-1184.
[2] Ren C X,Dai D Q,Yan H.Coupled kernel embedding for low-resolution face image recognition[J].IEEE Transactions on Image Processing,2012,21(8) :3770-3783.
[3] Yilmaz A,Javed O,Shah M.Object tracking:a survey[J]. ACM Computer Surveys,2006,38(4) :1-45.
[4] Qiao Y,Wang W,Minematsu N,et al.A theory of phase singularities for image representation and its applications to object tracking and image matching[J]. IEEE Transactions on Image Processing,2009,18(10) :2153-2166.
[5] Khan Z H, Gu I Y H.Joint feature correspondences and appearance similarity for robust visual object tracking[J].IEEE Transactions on Information Forensics and Security,2010,5(3) :591-606.
[6] Sun L, Liu G Z.Visual object tracking based on combination of local description and global representation[J]. IEEE Transactions on Circuits and Systems for Video Technology,2011,21(4) :408-420.
[7] Lowe D G.Distinctive image features from scale-invariant key points[J].International Journal Computer Vision,2004,60(2):91-110.
[8] Pan P, Schonfeld D.Video tracking based on sequential particle filtering on graphs[J].IEEE Transactions on Image Processing,2011,20(6) :1641-1651.
[9] Fernando W S P,Udawatta L,Pathirana P N.Identification of moving obstacles with Pyramidal Lucas Kanade optical flow and k means clustering[C]// Proceedings of 3rd International Conference on Information and Automation for Sustainability.Melbourne (Australia) :IEEE Press,2007:111-117.
[10] Siong L Y,Mokri S S,Hussain A,et al.Motion detection using Lucas Kanade algorithm and application enhancement[C]// International Conference on Electrical Engineering and Informatics.Bangi (Malaysia) :IEEE Press,2009,2:537-542.
[11] Pyda B, Brindha R.A novel high speed L-K based optical flow computation[C]// International Conference on Communication and Computational Intelligence.Erode (India) :IEEE Press,2010,2:104-108.
[12] Kovashka A,Grauman K.Learning a hierarchy of discriminative space-time neighborhood features for human action recognition[C]// Conference on Computer Vision and Pattern Recognition. San Francisco(USA):IEEE Press, 2010,2:2046-2053.
[13] Yu Q,Dinh T,Medioni G.Online tracking and reacquisition using co-trained generative and discriminative trackers[J].Lecture Notes in Computer Science,2008:678-691.
[14] Kalal Z,Mikolajczyk K,Matas J.Forward-backward error: automatic detection of tracking failures[C]// The 20th International Conference on Pattern Recognition.Istanbul(Turkey):Springers Press,2010:2756-2759.

相似文献/References:

[1]朱安民,明仲.基于神经动力学的目标跟踪算法[J].深圳大学学报理工版,2009,26(3):283.
 ZHU An-min and MING Zhong.The algorithms of target tracking based on neural dynamic[J].Journal of Shenzhen University Science and Engineering,2009,26(No.3(221-330)):283.
[2]胡涛,郭宝平,郭轩.基于游程分析轮廓提取算法的改进[J].深圳大学学报理工版,2009,26(4):405.
 HU Tao,GUO Bao-ping,and GUO Xuan.An improved run-based boundary extraction algorithm[J].Journal of Shenzhen University Science and Engineering,2009,26(No.3(221-330)):405.
[3]柳伟,陈旭,梁永生,等.基于时空显著图的可伸缩视频码率控制方法[J].深圳大学学报理工版,2013,30(No.5(441-550)):462.[doi:10.3724/SP.J.1249.2013.05462]
 Liu Wei,Chen Xu,Liang Yongsheng,et al.Rate control for scalable video coding based on spatiotemporal saliency map[J].Journal of Shenzhen University Science and Engineering,2013,30(No.3(221-330)):462.[doi:10.3724/SP.J.1249.2013.05462]
[4]刘进忙,倪鹏,李超,等.复杂战场环境下的分坐标处理[J].深圳大学学报理工版,2014,31(2):138.[doi:10.3724/SP.J.1249.2014.02138]
 Liu Jinmang,Ni Peng,Li Chao,et al.The independent coordinate processing in complex battlefield[J].Journal of Shenzhen University Science and Engineering,2014,31(No.3(221-330)):138.[doi:10.3724/SP.J.1249.2014.02138]
[5]贺成龙,秦洪,于永生.一种空中目标航迹的自适应跟踪算法[J].深圳大学学报理工版,2014,31(4):361.[doi:10.3724/SP.J.1249.2014.04361]
 He Chenglong,Qin Hong,and Yu Yongsheng.An adaptive tracking algorithm for aerial target[J].Journal of Shenzhen University Science and Engineering,2014,31(No.3(221-330)):361.[doi:10.3724/SP.J.1249.2014.04361]
[6]罗雪晖,李霞,张基宏.支持向量机及其应用研究[J].深圳大学学报理工版,2003,20(3):40.
 LUO Xue-hui,LI Xia and ZHANG Ji-hong.Introduction to Support Vector Machine and Its Applications[J].Journal of Shenzhen University Science and Engineering,2003,20(No.3(221-330)):40.
[7]韩迪,等.增量学习的优化算法在app使用预测中的应用[J].深圳大学学报理工版,2019,36(1):43.[doi:10.3724/SP.J.1249.2019.01043]
 HAN Di,LI Wenting,et al.The application of optimization algorithm based on incremental learning in app usage prediction[J].Journal of Shenzhen University Science and Engineering,2019,36(No.3(221-330)):43.[doi:10.3724/SP.J.1249.2019.01043]
[8]刘翠响,袁香伟,王宝珠,等.最小均衡化后的行人重识别[J].深圳大学学报理工版,2019,36(4):447.[doi:10.3724/SP.J.1249.2019.04447]
 LIU Cuixiang,YUAN Xiangwei,WANG Baozhu,et al.Minimum equalization for pedestrain re-identification[J].Journal of Shenzhen University Science and Engineering,2019,36(No.3(221-330)):447.[doi:10.3724/SP.J.1249.2019.04447]
[9]刘润奇,贺兴时,南夷非,等.网络多媒体数据中舆情关联主题的挖掘方法[J].深圳大学学报理工版,2020,37(1):72.[doi:10.3724/SP.J.1249.2020.01072]
 LIU Runqi,HE Xingshi,NAN Yifei,et al.Mining method of public opinion related topic in network multimedia data[J].Journal of Shenzhen University Science and Engineering,2020,37(No.3(221-330)):72.[doi:10.3724/SP.J.1249.2020.01072]
[10]黄林,常健,杨帆,等.基于改进k-means的电力信息系统异常检测方法[J].深圳大学学报理工版,2020,37(2):214.[doi:10.3724/SP.J.1249.2020.02214]
 HUANG Lin,CHANG Jian,YANG Fan,et al.An anomaly detection method for electric power information system based on improved k-means[J].Journal of Shenzhen University Science and Engineering,2020,37(No.3(221-330)):214.[doi:10.3724/SP.J.1249.2020.02214]

备注/Memo

备注/Memo:
Received:2013-01-09;Accepted:2013-04-20
Foundation:National Natural Science Foundation of China(61273354,61202159)
Corresponding author:Associate professor Zhu Anmin.E-mail:azhu@szu.edu.cn
Citation:Zhu Anmin,Chen Yanming.A real-time target tracking algorithm based on the consistency constraint of feature points[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(3): 228-234.(in Chinese)
基金项目:国家自然科学基金资助项目(61273354,61202159)
作者简介:朱安民(1964-),男(汉族),江西省上高县人,深圳大学副教授、博士.E-mail:azhu@szu.edu.cn
引文:朱安民,陈燕明.基于特征点一致性约束的实时目标跟踪算法[J]. 深圳大学学报理工版,2013,30(3):228-234.
更新日期/Last Update: 2013-05-19