[1]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190-194.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(No.2(111-220)):190-194.[doi:10.3724/SP.J.1249.2013.02190]
点击复制

两条雁行预制裂隙贯通机制的细观数值模拟()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.2(111-220)
页码:
190-194
栏目:
土木建筑工程
出版日期:
2013-03-18

文章信息/Info

Title:
Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon
作者:
李凡李雪峰
合肥工业大学土木与水利工程学院,合肥 230009
Author(s):
Li Fan and Li Xuefeng
School of Civil Engineering, Hefei University of Technology, Hefei 230009, P.R.China
关键词:
岩土工程颗粒流方法裂隙岩体雁行排列裂纹数值模拟
Keywords:
geotechnical engineering particle flow code method fractured rock echelon arrangement cracks numerical simulation
分类号:
TU 452
DOI:
10.3724/SP.J.1249.2013.02190
文献标志码:
A
摘要:
采用颗粒流分析软件,对含有不同岩桥倾角的两条雁行预制裂隙岩样进行数值模拟.研究表明,当岩桥倾角为80°和90°时,在荷载作用下裂隙内外端有翼裂纹出现,同时次生裂纹在预制裂隙尖端出现,岩桥区域主要产生拉剪复合型的贯通;当岩桥倾角为120°时,随着荷载的增加,一条预制裂隙内端翼裂纹扩展至另一条预制裂隙内端或中部,岩桥区域主要产生拉伸型的贯通,且翼裂纹是张性的.数值模拟结果表明,非叠合裂隙试样强度均低于叠合裂隙试样强度,当裂隙呈现一定交角时,其相互之间会产生屏蔽效应,造成试样强度增加.
Abstract:
A numerical simulation of the experiment on rock with two pre-existing flaws of different rock bridge was proposed by using particle flow code. It is shown that wing fractures and secondary fractures appear under loading and fracture coalescence takes place with tension and shear mode when the rock bridge angle is 80° or 90°. But with the increase of load the wing fractures propagate to other fractures when the rock bridge angle is 120°and fracture coalescence takes place with tension mode. Furthermore, the simulation verifies that cracks will have their inter-shielding effect when they are in a certain angle, resulting in the increase of the strength of the sample.

参考文献/References:

[1] Zhang Zhiqiang. Meso-mechanical Failure Characteristics & Macro-mechanical Parameters Estimation of Fractured Rock Mass with Nonpenetrative Fissures[D]. Xi’an: Xi’an University of Technology, 2009.(in Chinese)
张志强. 非贯通裂隙岩体破坏细观特征及其宏观力学参数确定方法[D].西安:西安理工大学,2009.
[2] Reyes O, Einstein H H. Failure mechanisms of fractured rock a fracture coalescence model[C]// Proceedings of 7th International Congress on Rock Mechanics.Aachen(Germany):ICRM,1991: 333-340.
[3] Shen B. The mechanism of fracture coalescence in compression-experimental study and numerical simulation[J]. Engng Frac Mech, 1995,51(1):73-85.
[4] Shen B, Stephansson O, Einstein H H, et al. Coalescence of fracturesunder shear stresses in experiments[J]. J Geophys Res, 1995, 100(B4):5975-5990.
[5] Wong R H C, Chau K T. Crack coalescence in a rock-like material containing two cracks[J]. Int J Rock Mech Min Sci, 1998, 35(2): 147-164.
[6] Wong R H C, Chau K T, Tang C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws-Part I: experimental approach[J]. Int J Rock Mech Min Sci, 2001, 38: 909-924.
[7] Wong R H C, Leung W L, Wang S W. Shear strength studies on rock-like models containing arrayed open joints[C]// Proceeding of the 38th US Rock Mech Symp Rock Mech in the National Interest. Washington(USA):RMS, 2001: 843-849.
[8] Li Ning, Zhang Ping, Duan Qingwei, et al. Dynamic meso-damage model of jointed rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(11):1579-1584.(in Chinese)
李宁,张平,段庆伟,等.裂隙岩体的细观动力损伤模型[J].岩石力学与工程学报,2002, 21(11):1579-1584.
[9] Zhang Ping, Li Ning, He Ruolan, et al.Mechanism of fracture coalescence between two pre-existing under dynamic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2006, 25(6): 1210-1217.(in Chinese)
张平,李宁,贺若兰,等. 动载下两条断续预制裂隙贯通机制研究[J].岩石力学与工程学报,2006, 25(6):1210-1217.
[10] Zhou Jian, Chi Yong, Chi Yuwei, et al. The method of particle flow and PFC Code [J]. Rock and Soil Mechanics, 2000, 21(3): 271-274.(in Chinese)
周健,池永,池毓蔚,等. 颗粒流方法及PFC程序[J]. 岩土力学,2000,21(3) :271-274.
[11] Liu Yuanjun. Research on Cracks Initiation, Propagation and Anchoring Effect in Rock-masses[D]. Dalian: Dalian University of Technology, 2012.(in Chinese)
刘元俊. 岩体裂纹起裂扩展规律及锚固效应研究[D].大连: 大连理工大学,2012.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(No.2(111-220)):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(No.2(111-220)):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(No.2(111-220)):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(No.2(111-220)):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(No.2(111-220)):394.[doi:10.3724/SP.J.1249.2016.04394]
[6]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(No.2(111-220)):484.[doi:10.3724/SP.J.1249.2016.05484]
[7]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):147.
[8]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):393.[doi:10.3724/SP.J.1249.2017.04393]
[9]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):501.[doi:10.3724/SP.J.1249.2017.05501]
[10]陈峰.早龄期玄武岩纤维水泥土的强度及变形特性[J].深圳大学学报理工版,2017,34(6):611.[doi:10.3724/SP.J.1249.2017.06611]
 Chen Feng.Strength and deformation characteristics of basalt fiber cement-soil at early age[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(111-220)):611.[doi:10.3724/SP.J.1249.2017.06611]

备注/Memo

备注/Memo:
Received:2011-09-10;Revised:2012-12-20;Accepted:2013-02-10
Foundation:National Natural Science Foundation of China(40772172)
Corresponding author:Associate professor Li Fan. E-mail: lfhfgd@163.com
Citation:Li Fan, Li Xuefeng. Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(2): 190-194.(in Chinese)

基金项目:国家自然科学基金资助项目(40772172)
作者简介:李凡(1967-),男(汉族),合肥工业大学副教授、博士. E-mail: lfhfgd@163.com
引文:李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J]. 深圳大学学报理工版,2013,30(2):190-194.
更新日期/Last Update: 2013-03-21