[1]刘泽寰,郑阳阳,龚映雪,等.利用重组酵母实现木薯至乙醇的直接转化[J].深圳大学学报理工版,2012,29(No.6(471-580)):548-552.[doi:10.3724/SP.J.1249.2012.06548]
 LIU Ze-huan,ZHENG Yang-yang,GONG Ying-xue,et al.Direct conversion from cassava to bioethanol with a recombinant strain of yeast[J].Journal of Shenzhen University Science and Engineering,2012,29(No.6(471-580)):548-552.[doi:10.3724/SP.J.1249.2012.06548]
点击复制

利用重组酵母实现木薯至乙醇的直接转化()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第29卷
期数:
2012年No.6(471-580)
页码:
548-552
栏目:
生物工程
出版日期:
2012-11-30

文章信息/Info

Title:
Direct conversion from cassava to bioethanol with a recombinant strain of yeast
文章编号:
20120614
作者:
刘泽寰郑阳阳龚映雪李晶博肖文娟林蒋海
暨南大学 生命与健康工程研究院 分子生物学研究中心,广州 510632
Author(s):
LIU Ze-huan ZHENG Yang-yang GONG Ying-xue LI Jing-bo XIAO Wen-juan and LIN Jiang-hai
Institutes of Life and Health Engineering, Jinan University, Guangzhou 510632, P.R.China
关键词:
基因工程木薯生物乙醇酵母发酵α-淀粉酶糖化酶共表达
Keywords:
genetic engineering cassava bioethanol yeast fermentation α-amylase glucoamylase co-expression
分类号:
Q 78; X 382.1
DOI:
10.3724/SP.J.1249.2012.06548
文献标志码:
A
摘要:
利用同时表达α-淀粉酶与糖化酶基因的工业多倍体重组酵母,实现从木薯原料到乙醇的直接有效转化.两种淀粉酶基因分别从米曲霉和黑曲霉通过RT-PCR获得,连入表达载体pScIKP后通过电击转化重组进酿酒酵母AS2.489的基因组.重组菌株培养上清的α-淀粉酶活性与糖化酶活性分别达1 940 U/mL与15.5 U/mL.模拟工业上乙醇发酵条件,于5 L发酵罐中对200 g/L木薯进行直接发酵,4 d内发酵液中乙醇体积分数达8.68%,约为理论值的80.9%.结果表明,所获重组酵母发酵性能优越,在不添加任何商业酶且无需预处理的条件下对木薯的直接发酵效果良好.
Abstract:
In order to develop a direct and efficient process to produce ethanol from starchy materials cassava, a recombinant strain of industrial polyploid yeast co-expressing α-amylase and glucoamylase genes was constructed. The two genes were cloned into the co-expression vector pScIKP, and then transformed into Saccharomyces cerevisiae AS2.489 by electroporation.Activities of α-amylase and glucoamylase in the culture supernatant of the recombinant strain S.cerevisiae-AG reached 1 940 U/mL and 15.5 U/mL respectively.Ethanol fermentation was also conducted using a protocol simulating the industrial process in a 5 L jar fermenter with 200 g/L of cassava.The ethanol concentration rate φ(ethanol)=8.68%, i.e. 80.9% of equivalent theoretical value. ?This result indicates that our recombinant yeast is sufficiently robust and capable of producing ethanol directly from cassava without the addition of any commercial amylases.

参考文献/References:

[1] Yamada R,Bito Y,Adachi T,et al.Efficient production of ethanol from raw starch by a mated diploid saccharomyces cerevisiae with integrated alpha-amylase and glucoamylase genes [J]. Enzyme and Microbial Technology,2009,44(5): 344-349.
[2] Yamada R,Tanaka T,Ogino C,et al.Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch[J].Applied Microbiology Biotechnology,2010,85(5): 1491-1498.
[3] LIU Shu-hai,LIU Xiao-feng.Technological development of non-grain based fuel ethanol production[J].Liquor Making,2010,37(2): 9-11.(in Chinese)
柳树海,刘晓峰.木薯非粮燃料乙醇生产技术进展[J].酿酒,2010,37(2): 9-11.
[4] Liao B,Hill G A,Roesler W J.Amylolytic activity and fermentative ability of saccharomyces cerevisiae strains that express barley α-amylase[J].Biochemical Engineering Journal,2010,53(1): 63-70.
[5] Kim J H,Kim H R,Lim M H,et al.Construction of a direct starch-fermenting industrial strain of saccharomyces cerevisiae producing glucoamylase,alpha-amylase and debranching enzyme[J].Biotechnology Letter,2010,32(5): 713-719.
[6] LUO Jin-xian,LI Zheng-hai,LI Wen-qing.Expression and secretion of barley alpha-amylase and aspergillus niger glucoamylase in saccharomyces cerevisiae[J].Science in China: Series C,1998,41(2): 113-118.
[7] WANG Yong-ji,LIU Hong-di,SUN Tong,et al.Cloning of α-amylase gene from schwanniomyces occidentalis and expression in saccharomyces cerevisiae[J].Science in China: Series C,1998,41(6): 570-576.
[8] Eksteen J M,Van Rensburg P,Cordero Otero R R,et al.Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera[J]. Biotechnology and Bioengineering,2003,84(6): 639-646.?
[9] Shigechi H,Uyama K,Fujita Y,et al.Efficient ethanol production from starch through development of novel flocculent yeast strains displaying glucoamylase and co-displaying or secreting alpha-amylase[J].Journal of Molecular Catalysis B: Enzymatic,2002,17(3/4/5): 179-187.
[10] GONG Ying-xue,TAI Yan,XIAO Wen-juan,et al.Construction of saccharomyces cerevisiae integrated expression vector and its application in cellulose bioconvesion[J].Journal of Shenzhen University Science and Engineering,2010,27(1): 82-87.(in Chinese)
龚映雪,台 艳,肖文娟,等.酵母多基因表达载体在纤维素生物转化中应用[J].深圳大学学报理工版,2010,27(1): 82-87.
[11] Ghang D M,Yu L,Lim M H,et al.Efficient one-step starch utilization by industrial strains of saccharomyces cerevisiae expressing the glucoamylase and alpha-amylase genes from debaryomyces occidentalis[J].Biotechnology Letter,2007,29(8): 1203-1208.
[12] Thompson J R,Register E,Curotto J,et al.An improved protocol for the preparation of yeast cells for transformation by electroporation[J].Yeast,1998,14(6): 565-571.
[13] Filho S A,Galembeck E V,Faria J B,et al.Stable yeast transformants that secrete functional α-amylase encoded by cloned mouse pancreatic cDNA[J].Nature Biotechnology,1986(4): 311-315.?
[14] Khaw T S,Katakura Y,Koh J,et al.Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch[J].Applied Microbiology Biotechnology,2005,70(5): 573-579.
[15] de Moraes L M,Astolfi-Filho S,Oliver S G.Development of yeast strains for the efficient utilisation of starch: Evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins[J].Applied Microbiology Biotechnology,1995,43(6): 1067-1076.
[16] Steyn A J,Pretorius I S.Co-expression of a saccharomyces diastaticus glucoamylase-encoding gene and a bacillus amyloliquefaciens alpha-amylase-encoding gene in saccharomyces cerevisiae[J].Gene,1991,100: 85-93.
[17] Pilone G J. Determination of ethanol in wine by titrimetric and spectrophotometric dichromate methods: Collaborative study[J].Journal of the Association of Offical Analytical Chemists,1985,68(2): 188-190.
[18] Wong D,Robertson G,Lee C,et al. Synergistic action of recombinant alpha-amylase and glucoamylase on the hydrolysis of starch granules[J].Protein Journal,2007,26(3): 159-164.

相似文献/References:

[1]龚映雪,台艳,肖文娟,等.酵母多基因表达载体在纤维素生物转化中应用[J].深圳大学学报理工版,2010,27(1):82.
 GONG Ying-xue,TAI Yan,XIAO Wen-juan,et al.Construction of Saccharomyces cerevisiae integrated expression vector and its application in cellulose bioconvesion[J].Journal of Shenzhen University Science and Engineering,2010,27(No.6(471-580)):82.
[2]莫蓓莘.RNA在植物细胞中的定位及其研究进展[J].深圳大学学报理工版,2011,28(No.3(189-282)):230.
 MO Bei-xin.RNA localization in plant cells and advances of the research[J].Journal of Shenzhen University Science and Engineering,2011,28(No.6(471-580)):230.
[3]刘士德,陈汗英,张建华,等.PSTI1可提高大肠杆菌应答胁迫能力[J].深圳大学学报理工版,2011,28(No.4(283-376)):347.
 LIU Shi-de,CHEN Han-ying,ZHANG Jian-hua,et al.A novel STI1-like protein from Physarum polycephalum can enhance E.coli response to stress[J].Journal of Shenzhen University Science and Engineering,2011,28(No.6(471-580)):347.
[4]张毅哲,刘琼,田静,等.人脑中脱碘酶相互作用蛋白的筛选与验证[J].深圳大学学报理工版,2011,28(No.5(377-470)):423.
 ZHANG Yi-zhe,LIU Qiong,TIAN Jing,et al.Investigation on the interactive protein of iodothyronine deiodinase 3 mutant in human brain[J].Journal of Shenzhen University Science and Engineering,2011,28(No.6(471-580)):423.
[5]李建成,彭世清,胡章立.SEC2在莱茵衣藻中的表达及免疫学活性分析[J].深圳大学学报理工版,2012,29(No.2(095-188)):159.[doi:10.3724/SP.J.1249.2012.02159]
 LI Jian-cheng,PENG Shi-qing,et al.Expression and immunological activity of enterotoxin C2 from Staphylococcus aureus in Chlamydomonas reinhardti[J].Journal of Shenzhen University Science and Engineering,2012,29(No.6(471-580)):159.[doi:10.3724/SP.J.1249.2012.02159]
[6]王潮岗,黄惠珠,孙海珊,等.一种莱茵衣藻启动子功能检测系统的构建[J].深圳大学学报理工版,2012,29(No.6(471-580)):534.[doi:10.3724/SP.J.1249.2012.06534]
 WANG Chao-gang,HUANG Hui-zhu,SUN Hai-shan,et al.Construction of Chlamydomonas reinhardtii system for analyzing the function of algal promoter[J].Journal of Shenzhen University Science and Engineering,2012,29(No.6(471-580)):534.[doi:10.3724/SP.J.1249.2012.06534]
[7]胡章立,李建成,程雪薇.莱茵衣藻线粒体遗传系统及其外源基因表达[J].深圳大学学报理工版,2013,30(No.6(551-660)):603.[doi:10.3724/SP.J.1249.2013.06603]
 Hu Zhangli,Li Jiancheng,and Cheng Xuewei.The mitochondrial genetic system and exogenous gene expression of Chlamydomonas reinhardtii[J].Journal of Shenzhen University Science and Engineering,2013,30(No.6(471-580)):603.[doi:10.3724/SP.J.1249.2013.06603]
[8]王潮岗,李逸,胡章立.转lpaat和gpd1基因工程藻的快速筛选[J].深圳大学学报理工版,2016,33(No.1(001-110)):33.[doi:10.3724/SP.J.1249.2016.01033]
 Wang Chaogang,Li Yi,and Hu Zhangli.Rapid screening of the transgenic algae haboring lpaat and gpd1[J].Journal of Shenzhen University Science and Engineering,2016,33(No.6(471-580)):33.[doi:10.3724/SP.J.1249.2016.01033]
[9]邓旭,黄慧炜,梁彩柳,等.一株海洋细菌高汞抗性及高富集能力的分析[J].深圳大学学报理工版,2016,33(No.6(551-660)):551.[doi:10.3724/SP.J.1249.2016.06551]
 Deng Xu,Huang Huiwei,Liang Cailiu,et al.Analysis of a marine bacterium with high mercury resistance and bioaccumulation capacity[J].Journal of Shenzhen University Science and Engineering,2016,33(No.6(471-580)):551.[doi:10.3724/SP.J.1249.2016.06551]
[10]凌文康,黄慧炜,刘冰,等.贻贝足丝蛋白的汞、镉抗性及富集机制[J].深圳大学学报理工版,2019,36(No.4(347-472)):361.[doi:10.3724/SP.J.1249.2019.04361]
 LING Wenkang,HUANG Huiwei,LIU Bing,et al.Mercury and cadmium resistance and enrichment mechanism of mussel foot fibroin[J].Journal of Shenzhen University Science and Engineering,2019,36(No.6(471-580)):361.[doi:10.3724/SP.J.1249.2019.04361]

备注/Memo

备注/Memo:
Received:2011-12-04;Revised:2012-05-02;Accepted:2012-10-30
Foundation:Science and Technology Planning Project of Guangdong Province (2005B10401015); Science and Technology Supported Project of Guangzhou (2009Z2-D521)
Corresponding author:Professor LIU Ze-huan.E-mail: zhliu@szu.edu.cn
Citation:LIU Ze-huan, ZHENG Yang-yang, GONG Ying-xue, et al.Direct conversion from cassava to bioethanol with a recombinant strain of yeast[J]. Journal of Shenzhen University Science and Engineering, 2012, 29(6): 548-552.
基金项目:广东省科技计划资助项目(2005B10401015); 广州市科技支撑计划资助项目(2009Z2-D521)
作者简介:刘泽寰(1972-),男(汉族),四川省成都市人,暨南大学研究员、博士生导师. E-mail: zhliu@jnu .edu .cn
引文:刘泽寰,郑阳阳,龚映雪,等. 利用重组酵母实现木薯至乙醇的直接转化[J]. 深圳大学学报理工版,2012,29(6):548-552.(英文版)
更新日期/Last Update: 2012-11-30