[1]吴迎春,彭建华.全局耦合混沌系统同步与反同步研究[J].深圳大学学报理工版,2008,25(4):422-426.
 WU Ying-chun and PENG Jian-hua.Synchronization and anti-synchronization in global coupling chaotic systems[J].Journal of Shenzhen University Science and Engineering,2008,25(4):422-426.
点击复制

全局耦合混沌系统同步与反同步研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第25卷
期数:
2008年4期
页码:
422-426
栏目:
电子光学与信息工程
出版日期:
2008-10-31

文章信息/Info

Title:
Synchronization and anti-synchronization in global coupling chaotic systems
文章编号:
1000-2618(2008)04-0422-05
作者:
吴迎春12彭建华1
1)深圳大学物理科学学院,深圳 518060
2)东北师范大学物理学院,长春 130024
Author(s):
WU Ying-chun12 and PENG Jian-hua1
1)College of Physics Science,Shenzhen University,Shenzhen 518060,P.R.China
2)College of Physics,Northeast Normal University,Changchun 130024,P.R.China
关键词:
混沌系统混沌同步混沌反同步Chua’s系统反对称立方映象
Keywords:
chaotic systemsynchronizationanti-synchronizationChua’s systemantisymmetric cubic map
分类号:
O 415.5
文献标志码:
A
摘要:
提出在具有反对称性的等同混沌子系统中,利用全局耦合实现同步与反同步共存的一般方法,论证了其在离散系统和连续系统上的适用条件.以含立方非线性项的Chua’s系统为元胞,设计出实验电路,在数值计算和电路仿真中均观察到耦合系统同步与反同步共存的现象. 实验结果表明,全局耦合方法正确可行.
Abstract:
Based on global coupling, a method which can induce both synchronization and anti-synchronization by constructing coupled chaotic system with identical antisymmetric chaotic systems was presented. The theoretical analysis had demonstrated conditions for both discrete and continuous chaotic systems. Taking Chua’s system with a cubic nonlinearity as an example, we designed the electronic circuit, observed the phenomena of synchronization and anti-synchronization by both numerical calculations and circuit simulations, which confirm our theoretical hypotheses quite well.

参考文献/References:

[1]Boccaletti S,Kurths J,Osipov G,等.混沌系统的同步[J].物理学报告,2002,366(1/2):1-101 (英文版).
[2]Pecora L M,Carroll T L.混沌系统中的同步现象[J].物理评论快报,1990,64(8):821-824 (英文版).
[3]Parlitz A,Kocarev T,Preckel H.利用混沌同步的编码信息[J].物理评论E,1996,53(5): 4351-4361 (英文版).
[4]Boccaletti S,Latora V,Moreno Y,等.复杂网络:结构与动力学[J].物理学报告,2006,424(4/5):175-308 (英文版).
[5]Belykh I,Lange E,Hasler M.脉冲神经元同步:网络拓扑实质[J].物理评论快报,2005,94(18):188101-1-188101-4(英文版).
[6]Watts D J,Strogatz S H.小世界网络的协同行为[J].自然杂志,1998,393(6684):440-442(英文版).
[7]Ioan Grosu.广义耦合实现3个等同振子的互相同步[J].分岔与混沌,2007,17(10):3519-3522 (英文版).
[8]ZHONG Guo-qun.含立方非线性项Chua’s电路的实现[J].IEEE电路与系统汇刊,1994,41(12):934-941 (英文版).
[9]陈式刚.映象与混沌[M].北京:国防工业出版社,1992.

[1]Boccaletti S,Kurths J,Osipov G,et al.The synchronization of chaotic systems[J].Physics Reports,2002,366(1/2):1-101.
[2]Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Physical Review Letters,1990,64(8): 821-824.
[3]Parlitz A,Kocarev T,Preckel H.Encoding messages using chaotic synchronization[J].Physical Review E,1996,53(5):4351-4361.
[4]Boccaletti S,Latorsa V,Moreno Y,et al.Complex networks: Structure and dynamics[J].Physics Reports,2006,424(4/5):175-308.
[5]Belykh I,Lange E,Hasler M.Synchronization of bursting neurons:what matters in the network topology[J].Physical Review Letters,2005,94(18):188101-1-188101-4.
[6]Watts D J,Strogatz S H.Collective dynamics of “small-world” networks[J].Nature,1998,393(6684):440-442.
[7]Ioan Grosu.General coupling for mutual synchronizing of three identical oscillators[J].International Journal of Bifurcation and Chaos,2007,17(10):3519-3522.
[8]ZHONG Guo-qun.Implementation of Chua’s circuit with a cubic nonlinearity[J].IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theories and Applications,1994,41(12):934-941.
[9]CHEN Shi-gang.Maps and Chaos[M].Beijing:National Defence Industry Press,1992 (in Chinese).

相似文献/References:

[1]郝加波,张志远.基于变维混沌系统的有限维反馈控制与同步[J].深圳大学学报理工版,2008,25(4):427.
 HAO Jia-bo and ZHANG Zhi-yuan.Finite-dimensional feedback control and synchronization based on variational-dimensional chaotic system[J].Journal of Shenzhen University Science and Engineering,2008,25(4):427.
[2]彭建华,吴迎春,张晓明.共轭变量耦合系统振荡消失研究[J].深圳大学学报理工版,2009,26(2):143.
 PENG Jian-hua,WU Ying-chun,and ZHANG Xiao-ming.Studies on the amplitude death phenomena in chaotic systems with conjugate variable coupling[J].Journal of Shenzhen University Science and Engineering,2009,26(4):143.
[3]丰建文,何玲,吴耿,等.统一混沌系统的修改模型及同步设计[J].深圳大学学报理工版,2010,27(1):37.
 FENG Jian-wen,HE Ling,WU Geng,et al.Modified model of unified chaotic system and the design of synchronization[J].Journal of Shenzhen University Science and Engineering,2010,27(4):37.
[4]罗文广,于滢源,谢广明,等.一类切换系统的混沌行为分析及混沌控制研究[J].深圳大学学报理工版,2013,30(No.3(221-330)):235.[doi:10.3724/SP.J.1249.2013.03235]
 Luo Wenguang,Yu Yingyuan,Xie Guangming,et al.Chaotic behavior analysis for a type of switched systems and its chaotic control[J].Journal of Shenzhen University Science and Engineering,2013,30(4):235.[doi:10.3724/SP.J.1249.2013.03235]
[5]潘运亮,杜军.参数不确定混沌系统的动态面输出调节方法[J].深圳大学学报理工版,2014,31(3):307.[doi:10.3724/SP.J.1249.2014.03307]
 Pan Yunliang and Du Jun.Dynamic surface output regulation method for chaotic systems with adaptive internal model[J].Journal of Shenzhen University Science and Engineering,2014,31(4):307.[doi:10.3724/SP.J.1249.2014.03307]
[6]毛北行,王战伟.一类分数阶复杂网络系统的有限时间同步控制[J].深圳大学学报理工版,2016,33(1):96.[doi:10.3724/SP.J.1249.2016.01096]
 Mao Beixing and Wang Zhanwei.Finite-time synchronization control of a class of fractional-order complex network systems[J].Journal of Shenzhen University Science and Engineering,2016,33(4):96.[doi:10.3724/SP.J.1249.2016.01096]

备注/Memo

备注/Memo:
收稿日期:2008-03-17;修回日期:2008-07-04
基金项目:国家自然科学基金资助项目(70571053,10405018);深圳市科技计划基金资助项目(200425)
作者简介:吴迎春(1984-),女(汉族),安徽省黄山市人,深圳大学和东北师范大学联合培养硕士研究生.E-mail:wuyc601@126.com
通讯作者:彭建华(1955-),男(汉族),深圳大学教授.E-mail:pengjh@szu.edu.cn
更新日期/Last Update: 2008-11-26