[1]何静媛,何中市,陈自郁.RNA二级结构预测SVMs模型研究[J].深圳大学学报理工版,2008,25(4):403-408.
 HE Jing-yuan,HE Zhong-shi,and CHEN Zi-yu.The research of RNA secondary structure prediction based on SVMs model[J].Journal of Shenzhen University Science and Engineering,2008,25(4):403-408.
点击复制

RNA二级结构预测SVMs模型研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第25卷
期数:
2008年4期
页码:
403-408
栏目:
电子光学与信息工程
出版日期:
2008-10-31

文章信息/Info

Title:
The research of RNA secondary structure prediction based on SVMs model
文章编号:
1000-2618(2008)04-0403-06
作者:
何静媛何中市陈自郁
重庆大学计算机学院, 重庆 400044
Author(s):
HE Jing-yuanHE Zhong-shiand CHEN Zi-yu
College of Computer Science,Chongging University,Chongqing 400044,P.R.China
关键词:
支持向量机NSSEL标签RNA二级结构伪结stem-loop结构
Keywords:
SVMsNSSEL labelsRNA secondary structurepseudoknotsstem-loop structure
分类号:
Q 71;TP 3
文献标志码:
A
摘要:
扩展NSSEL标签,对RNA分子中的stem-loop结构和伪结结构进行标记.将RNA分子序列中的碱基编码输入,经过支持向量机(support vector machines,SVMs)模型计算输出相应的结构标记.该模型经过训练后,待预测的RNA分子序列可得到对应的结构标识序列,这些标识序列可通过特定算法,唯一构建包括伪结在内的二级结构.实验结果表明,该算法在可接受的预测精度范围内具有较低的计算复杂度,克服了传统算法计算时间过长,无法在有限时间内得到有效结果的缺点.
Abstract:
A new expression of ribonucleicacid(RNA) structure information,called extended NSSEL labels,was introduced to describe pseudoknots. A model based on support vector machines(SVMs) was presented to predict RNA secondary structure with this labeling method. The test sequences were converted to label sequences,which could be reverted to RNA secondary structure. The experimental results show that this proposed model is able to reduce the high computation complexity,and efficiently predict the long RNA sequences difficult to do with traditional folding algorithms.

参考文献/References:

[1]Zuker M.关于寻找RNA分子中次优化折叠的研究[J].科学,1989,244(4900) :48-52(英文版).
[2]David H Mathews,Jeffret Sabina,Michael Zuker,等.扩大序列对热力学参数的依赖性有助于RNA二级结构的预测[J].分子生物学报,1999,288(5):911-940(英文版).
[3]Bjarne Knudsen,Jotun Hein.运用上下文无关文法进行RNA二级结构预测的研究[J].核酸研究,2003,31(13):3423-3428(英文版).
[4]Hu Y J.GPRM.寻找RNA二级结构元素的一种遗传算法程序设计方法[J].核酸研究,2003,31(7):3446-3449(英文版).
[5]任清华,莫忠良,陶玉敏.预测RNA二级结构的一种遗传模拟退火算法[J].武汉大学学报:理学版,2004(1):28 -33.
[6]LIU Qi,YE Xiu-zi,ZHANG Yin.基于Hopfield神经网络的RNA二级结构的预测算法[C]//国际会议IMSCCS’06,2006(英文版).
[7]宋丹丹,邓志东.RNA二级结构预测的模糊模型[J].中国科学E辑:信息科学,2007,37(10):1285-1303.
[8]张秀苇,邓志东,宋丹丹.RNA二级结构预测的神经网络方法[J].清华大学学报:自然科学版,2006,46(10):1793-1796.
[9]宁正元,林世强.RNA二级结构预测方法[J].福建农林大学学报:自然科学版,2007,36(1):60-63.
[10]VAPNIKVN,统计学习理论的本质[M].北京:清华大学出版社,2000.
[11]李元乐,陶兰.基于小波核支持向量机的蛋白质二级结构预测[J].深圳大学学报理工版,2006,23(2):117-121.

[1]Zuker M.On finding all suboptimal foldings of an RNA molecular[J ].Science,1989,244(4900):48-52.
[2]David H Mathews,Jeffret Sabina,Michael Zuker,et al.Expand sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure [J ].Journal of Molecular Biology,1999,288(5):911-940.
[3]Bjarne Knudsen,Jotun Hein.RNA secondary structure prediction using stochastic context-free grammars[J].Nucleic Acids Research,2003,31(13):3423-3428.
[4]Hu Y J.GPRM:a genetic programming approach to finding common RNA secondary structure elements[J].Nucleic Acids Research,2003,31(7):3446-3449.
[5]REN Qing-hua,MO Zhong-xi,TAO Yu-min.A genetic-simulated-annealing algorithm for predicting RNA secondary structure[J].Journal of Wuhan University:Natural Science Edition,2004(1):28-33(in Chinese).
[6]LIU Qi,YE Xiu-zi,ZHANG Yin.A Hopfield Neural Network Based Algorithm for RNA secondary structure prediction[C]//Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06),2006.
[7]SONG Dan-dan,DENG Zhi-dong.RNA secondary structure prediction based on fuzzing model[J].Science in China Series E:Technological Sciences,2007,37(10):1285-1303(in Chinese).
[8]ZHANG Xiu-wei,DENG Zhi-dong.SONG Dan-dan,RNA secondary structure prediction using BP neural network[J].Journal of Tsinghua University(Natural Science Edition),2006,46(10):1793-1796(in Chinese).
[9]NING Zheng-yuan,LIN Shi-qiang.The methods of RNA secondary structure prediction[J].Journal of Fujian Agricultural and Forestry University:Natural Science Edition,2007,36(1):60-63(in Chinese).
[10]VAPNIKVN.The Essence for Statistical Learning Theory[M].Beijing:Publishing Company of Tsinghua University,2000 (in Chinese).
[11]LI Yuan-le,TAO Lan.Protein secondary structure prediction based on WSVM[J].Journal of Shenzhen University Science and Engineering,2006,23(2):117-121(in Chinese).

相似文献/References:

[1]林春漪,尹俊勋,高 学,等.基于统计学习的多层医学图像语义建模方法[J].深圳大学学报理工版,2007,24(2):138.
 LIN Chun-yi,YIN Jun-xun,GAO Xue,et al.A multi-level medical image semantic modeling approach based on statistical learning[J].Journal of Shenzhen University Science and Engineering,2007,24(4):138.
[2]李健,贾元华,陈峰.高速公路转向快速路的匝道控制[J].深圳大学学报理工版,2011,28(No.5(377-470)):466.
 LI Jian,JIA Yuan-hua,and CHEN Feng.Local ramp control for urban expressway and related periphery freeway[J].Journal of Shenzhen University Science and Engineering,2011,28(4):466.
[3]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
 Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
[4]胡学娟,阮双琛,郭春雨,等.基于改进梯度方向直方图的人民币识别[J].深圳大学学报理工版,2014,31(5):487.[doi:10.3724/SP.J.1249.2014.05487]
 Hu Xuejuan,Ruan Shuangchen,Guo Chunyu,et al.Improved histograms of oriented gradients for Chinese RMB currency recognition[J].Journal of Shenzhen University Science and Engineering,2014,31(4):487.[doi:10.3724/SP.J.1249.2014.05487]
[5]罗雪晖,李霞,张基宏.支持向量机及其应用研究[J].深圳大学学报理工版,2003,20(3):40.
 LUO Xue-hui,LI Xia and ZHANG Ji-hong.Introduction to Support Vector Machine and Its Applications[J].Journal of Shenzhen University Science and Engineering,2003,20(4):40.
[6]曾磐,朱安民.基于支持向量机的NBA季后赛预测方法[J].深圳大学学报理工版,2016,33(1):62.[doi:10.3724/SP.J.1249.2016.01062]
 Zeng Pan and Zhu Anmin.A SVM-based model for NBA playoffs prediction[J].Journal of Shenzhen University Science and Engineering,2016,33(4):62.[doi:10.3724/SP.J.1249.2016.01062]
[7]杨菊欢,郑唯唯,段博文.基于SVM-GRA-模糊熵的项目组合风险优化[J].深圳大学学报理工版,2016,33(6):586.[doi:10.3724/SP.J.1249.2016.06586]
 Yang Juhuan,Zheng Weiwei,and Duan Bowen.Optimization of portfolio risk based on SVM-GRA-fuzzy entropy[J].Journal of Shenzhen University Science and Engineering,2016,33(4):586.[doi:10.3724/SP.J.1249.2016.06586]
[8]李婵,王俊杰,邬国锋,等.基于叶片光谱特征的农业区域植物分类[J].深圳大学学报理工版,2018,35(3):307.[doi:10.3724/SP.J.1249.2018.03307]
 LI Chan,WANG Junjie,WU Guofeng,et al.Classification of agricultural plants based on leaf spectral features[J].Journal of Shenzhen University Science and Engineering,2018,35(4):307.[doi:10.3724/SP.J.1249.2018.03307]
[9]郭金玉,李涛,李元.基于主元增广矩阵的SVM故障检测[J].深圳大学学报理工版,2021,38(5):543.[doi:10.3724/SP.J.1249.2021.05543]
 GUO Jinyu,LI Tao,and LI Yuan.SVM based on principal component augmented matrix for fault detection[J].Journal of Shenzhen University Science and Engineering,2021,38(4):543.[doi:10.3724/SP.J.1249.2021.05543]

备注/Memo

备注/Memo:
收稿日期:2008-04-01;修回日期:2008-07-01
基金项目:重庆大学国家大学生创新性实验计划项目(CQUCX-G-2007-18)
作者简介: 何静媛(1975-),女(汉族),四川省南充市人,重庆大学讲师.E-mail:ibm_hjy@sina.com
通讯作者: 何中市(1964-),男(汉族),重庆大学教授、博士生导师.E-mail:zshe@cqu.edu.cn
更新日期/Last Update: 2008-11-26