[1]张俊,刘德安,申自浩,等.面向轨迹数据发布的KSDP方案[J].深圳大学学报理工版,2023,40(2):236-243.[doi:10.3724/SP.J.1249.2023.02236]
 ZHANG Jun,LIU Dean,SHEN Zihao,et al.KSDP scheme for trajectory data publishing[J].Journal of Shenzhen University Science and Engineering,2023,40(2):236-243.[doi:10.3724/SP.J.1249.2023.02236]
点击复制

面向轨迹数据发布的KSDP方案()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第2期
页码:
236-243
栏目:
电子与信息科学
出版日期:
2023-03-15

文章信息/Info

Title:
KSDP scheme for trajectory data publishing
文章编号:
202302014
作者:
张俊1 刘德安1 申自浩1 王辉2 刘沛骞2
1)河南理工大学计算机科学与技术学院,河南焦作 454000
2)河南理工大学软件学院,河南焦作 454000
Author(s):
ZHANG Jun1 LIU Dean1 SHEN Zihao1 WANG Hui2 and LIU Peiqian2
1) School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, Henan Province, P.R.China
2) School of Software, Henan Polytechnic University, Jiaozuo 454000, Henan Province, P.R.China
关键词:
数据安全与计算机安全轨迹隐私差分隐私k-shape隐私保护数据发布
Keywords:
data security and computer security trajectory privacy differential privacy k-shape privacy protection data publishing
分类号:
TP309
DOI:
10.3724/SP.J.1249.2023.02236
文献标志码:
A
摘要:
轨迹隐私保护中使用k-means算法进行聚类时,对初始值敏感,且聚簇数目的选择具有一定的盲目性,为解决该问题并提高聚类结果的可用性,提出一种结合k-shape和差分隐私的轨迹隐私保护方案KSDP(k-shape differential privacy).首先,对轨迹数据进行划分切割预处理,利用轨迹的时间属性和空间属性对轨迹切割划分,从而提高聚类泛化的质量.其次,使用设定的效用函数对预处理后的轨迹数据进行评判,并对过滤后数据进行聚类泛化操作.最后,在泛化后的数据中加入Laplace噪声,使其满足差分隐私保护模型,进一步保护轨迹隐私.实验仿真结果表明,与传统差分隐私k-means聚类方案对比,KSDP方案有效提高了聚类结果的可用性,并具有一定的性能优势,更好地实现了轨迹数据发布和隐私保护.
Abstract:
For clustering applications in the field of trajectory privacy protection, the k-means algorithm is sensitive to initial values and the number of clusters may be somewhat arbitrary. To address these issues and further improve the usability of clustering results, a trajectory privacy protection scheme combining k-shape and differential privacy (KSDP) is proposed. Firstly, the trajectory data is partitioned and preprocessed based on the temporal and spatial attributes of the trajectory to improve the quality of clustering generalization. Secondly, a utility function is used to evaluate the preprocessed trajectory data, and the clustering generalization is performed after filtering the data. Finally, Laplace noise is added to the generalized data to satisfy the differential privacy protection model, so as to further protect the trajectory privacy. The experimental simulation results show that compared with the traditional differential privacy k-means clustering scheme, the KSDP scheme effectively improves the availability of clustering results and achieves better trajectory data publishing and privacy protection.

参考文献/References:

[1] YANG Huijie, VIJAYAKUMAR P, SHEN Jian, et al. A location-based privacy-preserving oblivious sharing scheme for indoor navigation [J]. Future Generation Computer Systems, 2022, 137: 42-52.
[2] DARAIO E, CAGLIERO L, CHIUSANO S, et al. Complementing location-based social network data with mobility data: a pattern-based approach [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21216-21227.
[3] LIU Bo, DING Ming, SHAHAM S, et al. When machine learning meets privacy: a survey and outlook [J]. ACM Computing Surveys, 2022, 54(2): 31.
[4] WU Zongda, LI Guiling, SHEN Shigen, et al. Constructing dummy query sequences to protect location privacy and query privacy in location-based services [J]. World Wide Web, 2021, 24(1): 25-49.
[5] BABUN L, DENNEY K, CELIK Z B, et al. A survey on IoT platforms: communication, security, and privacy perspectives [J]. Computer Networks, 2021, 192: 108040.
[6] NISHA Nisha, NATGUNANATHAN I, GAO Shang, et al. A novel privacy protection scheme for location-based services using collaborative caching [J]. Computer Networks, 2022, 213: 109107.
[7] JIANG Hongbo, LI Jie, ZHAO Ping, et al. Location privacy-preserving mechanisms in location-based services: a comprehensive survey [J]. ACM Computing Surveys, 2022, 54(1): 4.
[8] DWORK C, AGRAWAL M, DU Dingzhu, et al. Differential privacy: a survey of results [C]// Theory and Applications of Models of Computation. Berlin: Springer Berlin Heidelberg, 2008: 1-19.
[9] NAVIDAN H, MOGHTADAIEE V, NAZARAN N, et al. Hide me behind the noise: local differential privacy for indoor location privacy [C]// IEEE European Symposium on Security and Privacy Workshops. Piscataway, USA: IEEE, 2022: 514-523.
[10] BLANCO-JUSTICIA A, S?NCHEZ D, DOMINGO-FERRER J, et al. A critical review on the use (and misuse) of differential privacy in machine learning [J]. ACM Computing Surveys, 2023, 55(8): 160.
[11] 李洪涛,任晓宇,王洁,等.基于差分隐私的连续位置隐私保护机制[J].通信学报,2021,42(8):164-175.
LI Hongtao, REN Xiaoyu, WANG Jie, et al. Continuous location privacy protection mechanism based on differential privacy [J]. Journal on Communications, 2021, 42(8): 164-175.(in Chinese)
[12] 朱素霞,刘抒伦,孙广路.基于相对熵和k-means的形状相似差分隐私轨迹保护机制[J].通信学报,2021,42(2):113-123.
ZHU Suxia, LIU Shulun, SUN Guanglu. Shape similarity differential privacy trajectory protection mechanism based on relative entropy and k-means [J]. Journal on Communications, 2021, 42(2): 113-123.(in Chinese)
[13] CHENG Wenqing, WEN Ruxue, HUANG Haojun, et al. OPTDP: towards optimal personalized trajectory differential privacy for trajectory data publishing [J]. Neurocomputing, 2022, 472: 201-211.
[14] ZHANG En, LI Huimin, HUANG Yuchen, et al. Practical multi-party private collaborative k-means clustering [J]. Neurocomputing, 2022, 467: 256-265.
[15] 胡闯,杨庚,白云璐.面向差分隐私保护的聚类算法[J].计算机科学,2019,46(2):120-126.
HU Chuang, YANG Geng, BAI Yunlu. Clustering algorithm in differential privacy preserving [J]. Computer Science, 2019, 46(2): 120-126.(in Chinese)
[16] 张星,张兴.DCKPDP: 改进k-prototype聚类的差分隐私混合属性数据发布方法[J].计算机应用研究,2022,39(1):249-253.
ZHANG Xing, ZHANG Xing. Differential privacy mixed attribute data publishing method for improved k-prototype clustering [J]. Application Research of Computers, 2022, 39(1): 249-253.(in Chinese)
[17] ZHANG Peng, HUANG Teng, SUN Xiaoqiang, et al. Privacy-preserving and outsourced multi-party k-means clustering based on multi-key fully homomorphic encryption [J/OL]. IEEE Transactions on Dependable and Secure Computing. (2022-07-22). https://ieeexplore.ieee.org/document/9794391.
[18] ABBASIMEHR H, BAHRINI A. An analytical framework based on the recency, frequency, and monetary model and time series clustering techniques for dynamic segmentation [J]. Expert Systems with Applications, 2022, 192: 116373.
[19] ZHANG Rui, XIE Peng, WANG Chen, et al. Classifying transportation mode and speed from trajectory data via deep multi-scale learning [J]. Computer Networks, 2019, 162: 106861.

相似文献/References:

[1]张席,陈泯融,刘浩.无需随机预言模型的基于身份门限解密方案[J].深圳大学学报理工版,2010,27(3):340.
 ZHANG Xi,CHEN Min-rong,and LIU Hao.Practical identity-based threshold decryption scheme without random oracle[J].Journal of Shenzhen University Science and Engineering,2010,27(2):340.
[2]张席,陈泯融,杨玲.基于身份多接收者签密方案的安全性分析[J].深圳大学学报理工版,2010,27(4):408.
 ZHANG Xi,CHEN Min-rong,and YANG Ling.Cryptanalysis of an identity-based multi-recipient signcryption scheme[J].Journal of Shenzhen University Science and Engineering,2010,27(2):408.
[3]张席,刘浩.安全签密方案在嵌入式设备中的应用[J].深圳大学学报理工版,2011,28(No.5(377-470)):417.
 ZHANG Xi and LIU Hao.The application in embedded device of a security signcryption scheme[J].Journal of Shenzhen University Science and Engineering,2011,28(2):417.
[4]张鹏,喻建平,刘宏伟.同态签密方案及其在电子投票中的应用[J].深圳大学学报理工版,2011,28(No.6(471-564)):489.
 ZHANG Peng,YU Jian-ping,and LIU Hong-wei.A homomorphic signcryption scheme and its application in electronic voting[J].Journal of Shenzhen University Science and Engineering,2011,28(2):489.
[5]颜海龙,闫巧,冯纪强,等.基于PKI/CA互信互认体系的电子政务[J].深圳大学学报理工版,2012,29(No.2(095-188)):113.[doi:10.3724/SP.J.1249.2012.02113]
 YAN Hai-long,YAN Qiao,FENG Ji-qiang,et al.Research on standard system for mutual trust and mutual recognition based on PKI/CA in E-government[J].Journal of Shenzhen University Science and Engineering,2012,29(2):113.[doi:10.3724/SP.J.1249.2012.02113]
[6]欧阳春娟,李霞,李斌.基于递进多目标蛙跳优化的LSB±K隐写算法[J].深圳大学学报理工版,2012,29(No.3(189-282)):224.[doi:10.3724/SP.J.1249.2012.03224]
 OUYANG Chun-juan,LI Xia,and LI Bin.A secure LSB plus-minus K steganography based on escalating multi-objective SFLA[J].Journal of Shenzhen University Science and Engineering,2012,29(2):224.[doi:10.3724/SP.J.1249.2012.03224]
[7]李雄伟,张鹏,陈开颜,等.微控制器密码芯片秩相关电磁分析[J].深圳大学学报理工版,2012,29(No.3(189-282)):230.[doi:10.3724/SP.J.1249.2012.03230]
 LI Xiong-wei,ZHANG Peng,CHEN Kai-yan,et al.Rank correlation electromagnetic analysis on microcontroller[J].Journal of Shenzhen University Science and Engineering,2012,29(2):230.[doi:10.3724/SP.J.1249.2012.03230]

备注/Memo

备注/Memo:
Received: 2022- 10-11; Accepted: 2023-01-05; Online (CNKI): 2023-02-07
Foundation: National Natural Science Foundation of China (61300216); Key Scientific Research Projects of Colleges and Universities in Henan Province (23A520033); Doctoral Scientific Fund of Henan Polytechnic University (B2022-16, B2020-32)
Corresponding author: Associate professor SHEN Zihao. E-mail: szh@hpu.edu.cn
Citation: ZHANG Jun, LIU Dean, SHEN Zihao, et al. KSDP scheme for trajectory data publishing [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(2): 236-243.(in Chinese)
基金项目:国家自然科学基金资助项目(61300216);河南省高等学校重点科研资助项目(23A520033);河南理工大学博士基金资助项目(B2022-16,B2020-32)
作者简介:张俊(1981—),河南理工大学硕士生导师、讲师.研究方向:隐私安全保护技术.E-mail:zhangjun@hpu.edu.cn
引文:张俊,刘德安,申自浩,等.面向轨迹数据发布的KSDP方案[J].深圳大学学报理工版,2023,40(2):236-243.
更新日期/Last Update: 2023-03-30