[1]王发强.Knowm忆阻混沌电路:建模、分析与实验验证[J].深圳大学学报理工版,2023,40(2):218-226.[doi:10.3724/SP.J.1249.2023.02218]
 WANG Faqiang.A chaotic circuit based on Knowm memristor: modeling, analysis, and experimental verification[J].Journal of Shenzhen University Science and Engineering,2023,40(2):218-226.[doi:10.3724/SP.J.1249.2023.02218]
点击复制

Knowm忆阻混沌电路:建模、分析与实验验证()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第2期
页码:
218-226
栏目:
电子与信息科学
出版日期:
2023-03-15

文章信息/Info

Title:
A chaotic circuit based on Knowm memristor: modeling, analysis, and experimental verification
文章编号:
202302012
作者:
王发强
西安交通大学电气工程学院,西安 710049
Author(s):
WANG Faqiang
School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province, P.R.China
关键词:
混沌Knowm忆阻器数学模型平衡点数值仿真电路实验
Keywords:
chaotic Knowm memristor mathematical model equilibrium point numerical simulation circuit experiment
分类号:
TM132;O415.5
DOI:
10.3724/SP.J.1249.2023.02218
文献标志码:
A
摘要:
以往忆阻器及其混沌应用的研究主要集中于模拟忆阻器而展开,对以真实忆阻器构建混沌电路的研究不多.为了给Knowm忆阻器的混沌应用提供依据,在选定Knowm忆阻器模型参数的基础上,基于Knowm忆阻器设计了一类混沌电路,建立该混沌电路的数学模型,分析此电路的平衡点特性,并对系统进行数值仿真和电路实验.结果表明,理论分析结果与电路实验结果一致.研究结果验证了选定的Knowm忆阻器参数的正确性、模型的有效性以及以Knowm忆阻器等构建混沌电路的可行性.
Abstract:
Previous research on memristors and their chaotic applications has mainly focused on the use of memristor emulators, with little research on constructing the chaotic circuit using real memristors. In order to provide a basis for the chaotic applications of the Knowm memristor, we construct a chaotic circuit based on the Knowm memristor by selecting the parameters of the Knowm memristor, and analyze the equilibrium points. The system is subjected to numerical simulations and experimental testing. The experimental results are in good agreement with the results of numerical simulations, which show that the selecting parameters and theoretical analysis are correct, and the chaotic circuit is effective.

参考文献/References:

[1] CHUA L O. Memristor: the missing circuit element [J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519.
[2] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found [J]. Nature, 2008, 453: 80-83.
[3] 吴雪霜,贺利芳,张鹏.正交多用户降噪差分混沌键控通信系统[J].西安交通大学学报,2020,54(10):108-115..
WU Xueshuang, HE Lifang, ZHANG Peng. Differential chaotic shift keying system with orthogonal multiuser noise reduction [J]. Journal of Xi’an Jiaotong University, 2020, 54(10): 108-115.(in Chinese)
[4] 闫少辉,王尔童,孙溪,等.一个吸引子共存的混沌系统及其同步电路实现[J].深圳大学学报理工版,2021:38(6):649-657.
YAN Shaohui, WANG Ertong, SUN Xi, et al. A chaotic system with attractor coexistence and its synchronization circuit implementation [J]. Journal of Shenzhen University Science and Engineering, 2021, 38(6): 649-657.(in Chinese)
[5] 商立群,李洪波,侯亚东,等.基于特征选择和优化极限学习机的短期电力负荷预测[J].西安交通大学学报,2022,56(4):165-174.
SHANG Liqun, LI Hongbo, HOU Yadong, et al. Short-term power load forecasting based on feature selection and optimized extreme learning machine [J]. Journal of Xi’an Jiaotong University, 2022, 56(4): 165-174.(in Chinese)
[6] 包伯成,史国栋,许建平,等.含两个忆阻器混沌电路的动力学分析[J].中国科学:技术科学,2011,41(8):1135-1142.
BAO Bocheng, SHI Guodong, XU Jianping, et al. Dynamics analysis of chaotic circuit with two memristors [J]. Science China Technological Sciences, 2011, 41(8): 1135-1142.(in Chinese)
[7] ARTURO B, LUIGI F, MATTIA F, et al. A chaotic circuit based on Hewlett-Packard memristor [J]. Chaos, 2012, 22: 023136.
[8] 洪庆辉,曾以成,李志军.含磁控和荷控两种忆阻器的混沌电路设计与仿真[J].物理学报,2013,62:230502.
HONG Qinghui, ZENG Yicheng, LI Zhijun. Design and simulation of chaotic circuit for flux-controlled memristor and charge-controlled memristor [J]. Acta Physica Sinica, 2013, 62: 230502.(in Chinese)
[9] DENG Yue, LI Yuxia. A memristive conservative chaotic circuit consisting of a memristor and a capacitor [J]. Chaos, 2020, 30(1/2/3): 013120.
[10] LIU Xingce, MOU Jun, WANG Jiieyang, et al. A new simple chaotic circuit based on memristor and meminductor [J]. The European Physical Journal Plus, 2021, 136: 1182.
[11] JIN Peipei, WANG Guangyi, IU H H C, et al. A locally active memristor and its application in a chaotic circuit [J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2018, 65: 246-250.
[12] PENG Guangya, MIN Fuhong. Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit [J]. Nonlinear Dynamics, 2017, 90: 1607-1625.
[13] 阮静雅,孙克辉,牟俊.基于忆阻器反馈的Lorenz超混沌系统及其电路实现[J].物理学报,2016,65:190502.
RUAN Jingya, SUN Kehui, MOU Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation [J]. Acta Physica Sinica, 2016, 65: 190502.(in Chinese)
[14] 闫登卫,王丽丹,段书凯.基于忆阻器的多涡卷混沌系统及其脉冲同步控制[J].物理学报,2018,67:110502.
YAN Dengwei, WANG Lidan, DUAN Shukai. Memristor-based multi-scroll chaotic system and its pulse synchronization control [J]. Acta Physica Sinica, 2018, 67: 110502.(in Chinese)
[15] 王春华,蔺海荣,孙晶如,等.基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报,2020,42(4):795-810.
WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor [J]. Journal of Electronics & Information Technology, 2020, 42(4): 795-810.(in Chinese)
[16] WANG Xiaoyuan, GAO Meng, IU H H C, et al. Tri-valued memristor-based hyper-chaotic system with hidden and coexistent attractors [J]. Chaos, Solitons and Fractals, 2022. 159: 112177.
[17] MIN Xiaotao, WANG Xiaoyuan, ZHOU Pengfei, et al. An optimized memristor-based hyperchaotic system with controlled hidden attractors [J]. IEEE Access, 2019, 7: 124641-124646.
[18] LIN Hairong, WANG Chunhua, CUI Li, et al. Brain-like initial-boosted hyperchaos and application in biomedical image encryption [J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8839-8850.
[19] LIN Hairong, WANG Chunhua, XU Cong, et al. A memristive synapse control method to generate diversified multi-structure chaotic attractors [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 42(3): 942-995.
[20] LIN H R, WANG C H, SUN Y C, et al. Generating n-scroll chaotic attractors from a memristor-based magnetized hopfield neural network [J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2023, 70(1): 311-315.
[21] BARLOMIEJ G. Modeling of memristors under periodic signals of different parameters [J]. Energies, 2021, 14, 7264.
[22] JORGE G, IOANNIS V, ANGEL A, et al. Voltage divider for self-limited analog state programing of memristors [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(4): 620- 624.
[23] SERGE D S, SADATAKA F. A memristor based ultrasonic transducer: the memosducer [C]// IEEE International Ultrasonics Symposium. Tours, France, IEEE, 2016.doi: 10.1109/ULTSYM.2016.7728885.
[24] 朱雷杰,王发强.基于Knowm 忆阻器的新型忆感器模型的设计与分析[J].物理学报,2019:68: 198501.
ZHU Leijie, WANG Faqiang. Design and analysis of new meminductor model based on Knowm memristor [J]. Acta Physica Sinica, 2019, 68: 198501.(in Chinese)
[25] CHRISTOS V, HECTOR N, VIET-THANH P, et al. The first experimental evidence of chaos from a nonlinear circuit with a real memristor [C]// The 9th International Conference on Modern Circuits and Systems Technologies. Bremen, Germany: IEEE, 2020. doi:101109/MOCAST49295.2020.9200269.
[26] IVO M, MILKA P, DEJAN T. Memristors as candidates for replacing digital potentiometers in electric circuits [J]. Electronics, 2021, 10: 181.
[27] JORGE G, IOANNIS V, ANGEL A. Exploring memristor multi-level tuning dependencies on the applied pulse properties via a low cost instrumentation setup [J]. IEEE Access, 2019, 7: 59413.
[28] MICHAEL A N, TIMOTHY W M. AHaH computing-from metastable switches to attractors to machine learning [J]. Plos One, 2014, 9(2): e85175.
[29] WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov exponents from a time series [J]. Physica D, 1985, 16: 285-317.
[30] DANCA M F. Lyapunov exponents of a class of piecewise continuous systems of fractional order [J]. Nonlinear Dynamics, 2015, 81: 227-237.

相似文献/References:

[1]张晓明,王赫,彭建华.一个广义立方映像系统[J].深圳大学学报理工版,2009,26(3):327.
 ZHANG Xiao-ming,WANG He,and PENG Jian-hua.A generalized cubic map[J].Journal of Shenzhen University Science and Engineering,2009,26(2):327.
[2]田传俊,陈关荣.时变离散时空系统的混沌性[J].深圳大学学报理工版,2013,30(No.5(441-550)):469.[doi:10.3724/SP.J.1249.2013.05469]
 Tian Chuanjun and Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J].Journal of Shenzhen University Science and Engineering,2013,30(2):469.[doi:10.3724/SP.J.1249.2013.05469]
[3]谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J].深圳大学学报理工版,2013,30(No.5(441-550)):475.[doi:10.3724/SP.J.1249.2013.05475]
 Gu Kunming,Xie Weimiao,Wang Yu,et al.Control of spatiotemporal chaos by a hybrid itinerant feedback method[J].Journal of Shenzhen University Science and Engineering,2013,30(2):475.[doi:10.3724/SP.J.1249.2013.05475]
[4]朱涛,张广军,姚宏,等.滑模控制的时滞分数阶金融系统混沌同步[J].深圳大学学报理工版,2014,31(6):626.[doi:10.3724/SP.J.1249.2014.06626]
 Zhu Tao,Zhang Guangjun,Yao Hong,et al.Chaos synchronization of fractional order financial systems with time-delay based on sliding control[J].Journal of Shenzhen University Science and Engineering,2014,31(2):626.[doi:10.3724/SP.J.1249.2014.06626]
[5]张晓明,等.延迟反馈法控制混沌的解析研究[J].深圳大学学报理工版,2004,21(1):43.
 ZHANG Xiao-ming,HUANG De-yun,et al.Analytic study of controlling chaos via variable time-delayed feedback method[J].Journal of Shenzhen University Science and Engineering,2004,21(2):43.
[6]杨芮,等.基于布尔网络的低功耗物理随机数发生器[J].深圳大学学报理工版,2020,37(1):51.[doi:10.3724/SP.J.1249.2020.01051]
 YANG Rui,HOU Erlin,et al.Low-power physical random number generator using Boolean networks[J].Journal of Shenzhen University Science and Engineering,2020,37(2):51.[doi:10.3724/SP.J.1249.2020.01051]
[7]王驿宣,等.色散反馈微腔激光器产生无时延特征宽带混沌[J].深圳大学学报理工版,2021,38(3):252.[doi:10.3724/SP.J.1249.2021.03252]
 WANG Yixuan,WANG Daming,et al.Generation of wideband chaos without time delay signature using the microlaser with dispersive optical feedback[J].Journal of Shenzhen University Science and Engineering,2021,38(2):252.[doi:10.3724/SP.J.1249.2021.03252]
[8]闫少辉,王尔童,孙溪,等.一个吸引子共存的混沌系统及其同步电路实现[J].深圳大学学报理工版,2021,38(6):649.[doi:10.3724/SP.J.1249.2021.06649]
 YAN Shaohui,WANG Ertong,et al.A chaotic system with attractor coexistence and its synchronization circuit implementation[J].Journal of Shenzhen University Science and Engineering,2021,38(2):649.[doi:10.3724/SP.J.1249.2021.06649]
[9]曹可,赖强,赖聪.含多吸引子的忆阻混沌系统的分析与实现[J].深圳大学学报理工版,2022,39(4):480.[doi:10.3724/SP.J.1249.2022.04480]
 CAO Ke,LAI Qiang,and LAI Cong.Analysis and implementation of memristive chaotic system with multiple attractors[J].Journal of Shenzhen University Science and Engineering,2022,39(2):480.[doi:10.3724/SP.J.1249.2022.04480]
[10]闫少辉,宋进才,孙溪,等.一个非自治混沌系统及其弱信号检测的应用[J].深圳大学学报理工版,2023,40(2):227.[doi:10.3724/SP.J.1249.2023.02227]
 YAN Shaohui,SONG Jincai,et al.A non-autonomous chaotic system and its application in weak signal detection[J].Journal of Shenzhen University Science and Engineering,2023,40(2):227.[doi:10.3724/SP.J.1249.2023.02227]

备注/Memo

备注/Memo:
Received: 2022- 12-26; Accepted: 2023-01-01; Online (CNKI): 2023-02-07
Foundation: New Star of Youth Science and Technology of Shaanxi Province (2016KJXX-40)
Corresponding author: Associate professor WANG Faqiang. E-mail: faqwang@mail.xjtu.edu.cn
Citation: WANG Faqiang. A chaotic circuit based on Knowm memristor: modeling, analysis, and experimental verification [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(2): 218-226.(in Chinese)
基金项目:陕西省青年科技新星资助项目(2016KJXX-40)
作者简介:王发强(1980—),西安交通大学副教授、博士生导师.研究方向:电气与电子工程中的分岔与混沌.E-mail: faqwang@mail.xjtu.edu.cn
引文:王发强.Knowm忆阻混沌电路:建模、分析与实验验证[J].深圳大学学报理工版,2023,40(2):218-226.
更新日期/Last Update: 2023-03-30