[1]苏栋,吴泽雄,雷国平,等.挤密效应对砂土中水平受荷桩影响的数值研究[J].深圳大学学报理工版,2023,40(2):136-145.[doi:10.3724/SP.J.1249.2023.02136]
 SU Dong,WU Zexiong,LEI Guoping,et al.Numerical study on the influence of installation effect on laterally loaded piles in sand[J].Journal of Shenzhen University Science and Engineering,2023,40(2):136-145.[doi:10.3724/SP.J.1249.2023.02136]
点击复制

挤密效应对砂土中水平受荷桩影响的数值研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第2期
页码:
136-145
栏目:
土木建筑工程
出版日期:
2023-03-15

文章信息/Info

Title:
Numerical study on the influence of installation effect on laterally loaded piles in sand
文章编号:
202302002
作者:
苏栋12 吴泽雄1 雷国平3 王顺4
1)深圳大学土木与交通工程学院,广东深圳 518060
2)深圳大学滨海城市韧性基础设施教育部重点实验室,广东深圳 518060
3)佛山科学技术学院交通与土木建筑学院,广东佛山 528225
4)维也纳自然资源与生命科学大学岩土工程研究所,奥地利维也纳 1180
Author(s):
SU Dong12 WU Zexiong1 LEI Guoping3 and WANG Shun4
1) College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Key Laboratory for Resilient Infrastructures of Coastal Cities, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
3) School of Transportation, Civil Engineering & Architecture, Foshan University, Foshan 528225, Guangdong Province, P.R.China
4) Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences, Vienna 1180, Austria
关键词:
岩土工程桩基础挤密效应水平承载力任意拉格朗日-欧拉技术p-y曲线
Keywords:
geotechnical engineering pile foundation installation effect lateral capacity arbitrary Lagrangian-Eulerian (ALE) technique p-y curve
分类号:
TU441
DOI:
10.3724/SP.J.1249.2023.02136
文献标志码:
A
摘要:
为研究桩贯入砂土地基中导致的挤密效应对桩基水平承载能力的影响,建立数值模型模拟桩的压入过程和水平承载过程并分析桩的响应.结合任意拉格朗日-欧拉(arbitrary Lagrangian-Eulerian,ALE)技术和与状态相关的剪胀性砂土本构模型,对桩的贯入全过程进行模拟,并与模型试验进行对比验证.通过坐标转换与插值将轴对称ALE模型的土体状态数据传入三维拉格朗日有限元模型中,进行水平加载研究.为分析挤密效应的影响,同时模拟了无挤密效应时的水平受荷桩.结果表明,桩贯入后的挤密效应与砂土相对密度有关,在相对较密的砂土中会出现浅层砂土被挤松的现象,同时桩的贯入提高了砂土的水平应力;挤密桩的土水平抗力与桩水平位移曲线在松砂中普遍高于无挤密桩,在密砂中的浅层处则相反;挤密效应对松砂中长径比较小的桩的水平承载力有较大的提高作用,同时会降低密砂中长桩的承载力;由于挤密效应影响的水平承载力变化率与砂土的相对密度呈负相关,在长桩中两者有较强的线性关系.研究可为预测挤密桩的水平承载力提供参考.
Abstract:
In order to study the influence of the installation effect caused by pile penetration into a sand foundation on the pile horizontal bearing capacity, we establish a numerical model to simulate the penetration process and the horizontal loading process of the pile and analyze the response of pile. The whole process of pile penetration is simulated using the arbitrary Lagrangian-Euler (ALE) technology and a state-dependent dilatancy sand constitutive model, and compared with the model test. Through coordinate conversion and interpolation, the soil state data of the axisymmetric ALE model is transferred to a three dimensional Lagrangian finite element model for horizontal loading research. In order to quantitatively study the influence of the installation effect, the laterally loaded pile without the installation effect is simulated simultaneously. The results show that the compaction effect after pile penetration is related to the relative density of sand. Sand loosening has been observed in shallower locations for piles in relatively dense sand. The penetration of piles also improves the level of lateral soil stress. In loose sand, the lateral soil resistance-pile displacement curves of piles with installation effect are generally higher than that without installation effect. However, opposite observations have been made for the shallow layers of dense sand. The installation effect can greatly improve the lateral bearing capacity of the relatively short piles in loose sand, and on the contrary, it reduces the lateral bearing capacity of long piles in dense sand. The change rate of the lateral bearing capacity after considering the installation effect is negatively correlated to the relative sand density, which shows a strong linear relationship for long piles. This study can provide reference for predicting the horizontal bearing capacity of a displacement pile.

参考文献/References:

[1] JARDINE R J, ZHU B T, FORAY P, et al. Measurement of stresses around closed-ended displacement piles in sand [J]. Géotechnique, 2013, 63(1): 1-17.
[2] 周健,邓益兵,叶建忠,等.砂土中静压桩沉桩过程试验研究与颗粒流模拟[J].岩土工程学报,2009,31(4):501-507.
ZHOU Jian, DENG Yibing, YE Jianzhong, et al. Experimental and numerical analysis of jacked piles during installation in sand [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 501-507.(in Chinese)
[3] 杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土效应试验[J].深圳大学学报理工版,2016,33(5):484-491.
YANG Guolin, GONG Cheng, HUANG Wei. Experiments of soil compacting effects of GFRP pile in peaty soil [J]. Journal of Shenzhen University Science and Engineering, 2016, 33(5): 484-491.(in Chinese)
[4] 胡铠,苏栋,余中良,等.挤密效应对砂土中水平受荷桩承载特性的影响[J].岩土工程学报,2019,41(增刊2):213-216.
HU Kai, SU Dong, YU Zhongliang, et al. Influences of compaction effect on bearing capacity of laterally loaded piles in sand [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Suppl. 2): 213-216.(in Chinese)
[5] NI Lusu, SULEIMAN M T, RAICH A. Behavior and soil-structure interaction of pervious concrete ground-improvement piles under lateral loading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 04015071.
[6] 苏栋,李霞,李相菘.桩-土水平相互作用的颗粒流数值研究[J].深圳大学学报理工版,2006,23(1):42-47.
SU Dong, LI Xia, LI Xiangsong. Numerical study on lateral soil-pile interaction by particle flow code [J]. Journal of Shenzhen University Science and Engineering, 2006, 23(1): 42-47.(in Chinese)
[7] ENGIN H K, BRINKGREVE R B J, VAN TOL A F. Simplified numerical modelling of pile penetration-the press-replace technique [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(15): 1713-1734.
[8] SHENG Daichao, EIGENBROD K D, WRIGGERS P. Finite element analysis of pile installation using large-slip frictional contact [J]. Computers and Geotechnics, 2005, 32(1): 17-26.
[9] DARYAEI R, BAKROON M, AUBRAM D, et al. Numerical evaluation of the soil behavior during pipe-pile installation using impact and vibratory driving in sand [J]. Soil Dynamics and Earthquake Engineering, 2020, 134: 106177.
[10] 王建华,兰斐.钻井船插桩对邻近桩影响的耦合欧拉-拉格朗日有限元方法研究[J].岩土力学,2016,37(4):1127-1136.
WANG Jianhua, LAN Fei. A coupled Eulerian-Lagrange FEM method for analyzing the effects of spudcan penetration on an adjacent pile [J]. Rock and Soil Mechanics, 2016, 37(4): 1127-1136.(in Chinese)
[11] LORENZO R, DA CUNHA R P, CORD?O NETO M P, et al. Numerical simulation of installation of jacked piles in sand using material point method [J]. Canadian Geotechnical Journal, 2018, 55(1): 131-146.
[12] CYRIL P A, KOK S T, SONG M K, et al. Smooth particle hydrodynamics for the analysis of stresses in soil around Jack-in Pile [J]. European Journal of Environmental and Civil Engineering, 2022, 26(1): 94-120.
[13] WANG Jianfeng, ZHAO Budi. Discrete-continuum analysis of monotonic pile penetration in crushable sands [J]. Canadian Geotechnical Journal, 2014, 51(10): 1095-1110.
[14] LI Xiangsong. A sand model with state-dapendent dilatancy [J]. Géotechnique, 2002, 52(3): 173-186.
[15] SU D, LI J H. Three-dimensional finite element study of a single pile response to multidirectional lateral loadings incorporating the simplified state-dependent dilatancy model [J]. Computers and Geotechnics, 2013, 50: 129-142.
[16] VERDUGO R, ISHIHARA K. The steady state of sandy soils [J]. Soils and Foundations, 1996, 36(2): 81-91.
[17] ZHANG C, YANG Z X, NGUYEN G D, et al. Theoretical breakage mechanics and experimental assessment of stresses surrounding piles penetrating into dense silica sand [J]. Géotechnique Letters, 2014, 4(1): 11-16.
[18] GAUDIN C, SCHNAID F, GARNIER J. Sand characterization by combined centrifuge and laboratory tests [J]. International Journal of Physical Modelling in Geotechnics, 2005, 5(1): 42-56.
[19] WU Zexiang. Mechanical modelling of sand considering simple shear condition and its application to pile foundation [D]. Nantes: ?cole centrale de Nantes, 2017.
[20] WANG Dong, BIENEN B, NAZEM M, et al. Large deformation finite element analyses in geotechnical engineering [J]. Computers and Geotechnics, 2015, 65: 104-114.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(2):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(2):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(2):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(2):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(2):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(2):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(2):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(2):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(2):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(2):501.[doi:10.3724/SP.J.1249.2017.05501]
[11]唐皓,韦彬,张国柱,等.制冷工况下PHC能源桩的换热性能分析[J].深圳大学学报理工版,2022,39(1):51.[doi:10.3724/SP.J.1249.2022.01051]
 TANG Hao,WEI Bin,ZHANG Guozhu,et al.Analysis of the heat exchange performance of PHC energy pile under cooling condition[J].Journal of Shenzhen University Science and Engineering,2022,39(2):51.[doi:10.3724/SP.J.1249.2022.01051]

备注/Memo

备注/Memo:
Received: 2021- 11-03; Revised: 2022-07-01; Accepted: 2022-12-12; Online (CNKI): 2023-02-07
Foundation: National Natural Science Foundation of China (51878416)
Corresponding author: Lecturer LEI Guoping.E-mail: guoping.lei@foxmail.com; Professor SU Dong.E-mail: sudong@szu.edu.cn
Citation: SU Dong, WU Zexiong, LEI Guoping, et al. Numerical study on the influence of installation effect on laterally loaded piles in sand [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(2): 136-145.(in Chinese)
基金项目:国家自然科学基金资助项目(51878416)
作者简介:苏栋(1978—),深圳大学教授、博士生导师.研究方向:土与结构相互作用、韧性地下空间等.E-mail: sudong@szu.edu.cn
引文:苏栋,吴泽雄,雷国平,等.挤密效应对砂土中水平受荷桩影响的数值研究[J].深圳大学学报理工版,2023,40(2):136-145.
更新日期/Last Update: 2023-03-30