[1]李霞,郭梦婷,张孝铭,等.基于扩展计划行为理论的驾驶员跟驰意向分析[J].深圳大学学报理工版,2023,40(1):118-126.[doi:10.3724/SP.J.1249.2023.01118]
 LI Xia,GUO Mengting,ZHANG Xiaoming,et al.Analysis of driver’s car-following intention based on extended planning behavior theory[J].Journal of Shenzhen University Science and Engineering,2023,40(1):118-126.[doi:10.3724/SP.J.1249.2023.01118]
点击复制

基于扩展计划行为理论的驾驶员跟驰意向分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第1期
页码:
118-126
栏目:
交通物流
出版日期:
2023-01-06

文章信息/Info

Title:
Analysis of driver’s car-following intention based on extended planning behavior theory
文章编号:
202301014
作者:
李霞1郭梦婷1张孝铭2啜二勇3周巍4
1)河北工业大学土木与交通学院,天津 300401
2)帝国理工大学商学院,英国伦敦 SW7 2AZ
3)天津市交通科学研究院,天津 300060
4)河北省高速公路集团有限公司京雄筹建处,河北保定 071700
Author(s):
LI Xia1 GUO Mengting1 ZHANG Xiaoming2 CHUO Eryong3 and ZHOU Wei4
1) School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, P.R.China
2) Business School, Imperial College, London SW7 2AZ, UK
3) Tianjin Institute of Transportation Science, Tianjin 300060, P.R.China
4) Office for Beijing-Xiong’an Expressway, Hebei Expressway Group Limited, Baoding 071700, Hebei Province, P.R.China
关键词:
交通工程跟驰意向扩展计划行为理论结构方程模型中介效应人机混驾
Keywords:
traffic engineering car-following intention extended theory of planning behavior structural equation model mediation effect human driven and autonomous vehicles
分类号:
U491
DOI:
10.3724/SP.J.1249.2023.01118
文献标志码:
A
摘要:
未来道路交通流将呈现自动驾驶车辆和传统车辆混行的现象,为探究人机混驾环境下传统车辆驾驶员对自动驾驶车辆跟驰意向的影响因素,引入驾驶员对自动驾驶车辆的了解程度、风险感知及接受程度3个变量,构建基于扩展计划行为理论的驾驶员跟驰意向模型框架.通过问卷调查获取331份主观评价数据,并借助SPSS和AMOS软件检验数据的内部一致性及可靠性.运用结构方程模型进行路径分析及中介效应分析以检验影响因素间的关系.结果表明,基于扩展计划行为理论的驾驶员跟驰意向结构方程模型对人机混驾环境下驾驶员的跟驰意向具有良好解释力;行为态度、主观规范和知觉行为控制对驾驶员跟驰意向具有显著正向直接效应;风险感知和接受程度通过中介变量对驾驶员跟驰意向产生显著间接效应,其中,风险感知作用为负向,接受程度作用为正向;了解程度对驾驶员跟驰意向既有显著正向直接效应又有显著正向间接效应.研究结果可作为人机混驾环境下车辆交互行为分析的基础.
Abstract:
Road traffic flow will show the phenomenon of mixed driving of autonomous vehicles and traditional vehicles in the future. In order to explore psychological factors that affect traditional vehicle drivers’ intention to follow autonomous vehicles in the human-machine hybrid driving environment, three variables of driver’s understanding, risk perception, and acceptance of autonomous vehicles are introduced to construct an extended theoretical framework of planning behavior. Three hundred thirty-one subjective evaluation data are obtained through questionnaire survey. The internal consistency and reliability of the data are tested by SPSS and AMOS softwares. Finally, the path analysis and mediation effect analysis are carried out by using structural equation model to test relationship among the influencing factors. The results show that the structural equation model of driver’s car-following intention based on the theory of extended planning behavior has good explanatory power for the driver’s car-following intention in the mixed driving environment. Driver’s behavioral attitude, subjective norm and perceived behavioral control of autonomous vehicles have a significant positive and direct effect on driver’s car-following intention. Driver’s risk perception and acceptance of autonomous vehicles have a significant indirect effect on driver’s car-following intention through intermediary variables, in which the effect of risk perception is negative, and the effect of acceptance is positive. The degree of understanding has both a significant positive direct effect and a significant positive indirect effect on driver’s car-following intention. The research results can be used as the basis for vehicle interaction behavior analysis in the human-machine hybrid driving environment.

参考文献/References:

[1] KR?GER W. Automated vehicle driving: background and deduction of governance needs [J]. Journal of Risk Research, 2021, 24(1): 14-27.
[2] BANSAL P, KOCKELMAN K M. Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies [J]. Transportation Research Part A: Policy and Practice, 2017, 95: 49-63.
[3] AJZEN I. From intentions to actions: a theory of planned behavior [M]// KUHL J, BECKMANN J. Action control: from cognitions to behaviors. New York, USA: Springer-Verlag, 1985: 11-39.
[4] 侯培国,曹军.手动驾驶-CACC自动驾驶车辆混合交通流建模与仿真[J].北京交通大学学报,2021,45(6):94-102.
HOU Peiguo, CAO Jun. Manual driving-CACC autonomous vehicle mixed traffic flow modeling and simulation [J]. Journal of Beijing Jiaotong University, 2021, 45(6): 94-102.(in Chinese)
[5] RAHMATI Y, KHAJEH M, TALEBPOUR A, et al. Influence of autonomous vehicles on car-following behavior of human drivers [J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673(12): 367-379.
[6] MAHDINIA I, MOHAMMADNAZAR A, ARVIN R, et al. Integration of automated vehicles in mixed traffic: evaluating changes in performance of following human-driven vehicles [J]. Accident Analysis and Prevention, 2021, 152: 106006.
[7] ZHAO Xiangmo, WANG Zhen, XU Zhigang, et al. Field experiments on longitudinal characteristics of human driver behavior following an autonomous vehicle [J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 205-224.
[8] AJZEN I. Theory of planned behavior [J]. Organizational behavior and human decision processes, 1991, 50(2): 179-211.
[9] 崔洪军,金佳辰,朱敏清,等.人机混驾环境下驾驶人危险行为意向研究[J].安全与环境学报,2022,22(2):792-799.
CUI Hongjun, JIN Jiachen, ZHU Minqing, et al. Research on risky driving intentions of the drivers and unmanned vehicles interaction under environment of heterogeneous human-driven and automated vehicles [J]. Journal of Safety and Environment, 2022, 22(2): 792-799.(in Chinese)
[10] 高红丽,高丽英,杨炜程,等.基于持续跟踪调查的防御性驾驶行为分析模型[J].交通运输系统工程与信息,2020,20(2):151-156.
GAO Hongli, GAO Liying, YANG Weicheng, et al. Defensive driving behavior analysis model with follow-up surveys [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 151-156.(in Chinese)
[11] 李鹏飞,石建军,刘小明.基于计划行为理论的竞争驾驶行为建模[J].交通运输系统工程与信息,2016,16(1):92-98.
LI Pengfei, SHI Jianjun, LIU Xiaoming, et al. Modeling of competitive driving behavior based on theory of planned behavior [J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(1): 92-98.(in Chinese)
[12] 宋正林,杨润凯.基于结构方程模型对驾驶人变道行为的研究[J].交通节能与环保,2020,16(6):49-53.
SONG Zhenglin, YANG Runkai. Study on lane change behavior of drivers based on structural equation model [J]. Transport Energy Conservation & Environmental Protection, 2020, 16(6): 49-53.(in Chinese)
[13] BAMBERG S, AJZEN I, SCHMIDT P. Choice of travel mode in the theory of planned behavior: the roles of past behavior, habit, and reasoned action [J]. Basic and Applied Social Psychology, 2003, 25(3): 175-187.
[14] 史晨军,邓院昌,林庆丰,等.基于扩展计划行为理论的驾驶员疲劳驾驶行为心理影响因素分析[J].安全与环境工程,2018,25(6):94-99.
SHI Chenjun, DENG Yuanchang, LIN Qingfeng, et al. Psychology factors analysis of driver’s fatigue driving behavior based on the extended theory of planned behavior [J]. Safety and Environmental Engineering, 2018, 25(6): 94-99.(in Chinese)
[15] POTARD C, KUBISZEWSKI V, CAMUS G, et al. Driving under the influence of alcohol and perceived invulnerability among young adults: an extension of the theory of planned behavior [J]. Transportation Research Part F: Traffic Psychology and Behavior, 2018, 55: 38-46.
[16] BENTLER P M, CHOU C P. Practical issues in structural modeling [J]. Sociological Methods & Research, 1987, 16(1): 78-117.
[17] BENTLER P M, BONETT D G. Significant tests and goodness of ?t in the analysis of covariance structures [J]. Psychological Bulletin, 1980, 88(3): 588-606.
[18] 张彦宁,郭忠印,孙智.驾驶模拟环境中激进驾驶行为的影响因素分析[J].交通节能与环保, 2020,33(6):129-136.
ZHANG Yanning, GUO Zhongyin, SUN Zhi. Influencing factors of aggressive driving behavior in driving simulation environment [J]. Transport Energy Conservation & Environmental Protection, 2020, 33(6): 129-136.(in Chinese)

相似文献/References:

[1]陈娇娜,张生瑞,靳引利.高速公路行程时间可靠性的小波密度估计[J].深圳大学学报理工版,2016,33(4):432.[doi:10.3724/SP.J.1249.2016.04432]
 Chen Jiaona,Zhang Shengrui,and Jin Yinli.Highway travel time reliability modeling based on wavelet density estimation[J].Journal of Shenzhen University Science and Engineering,2016,33(1):432.[doi:10.3724/SP.J.1249.2016.04432]
[2]杨少伟,赖泓志,潘兵宏,等.高速公路主线相互合流至出口最小间距的研究[J].深圳大学学报理工版,2018,35(6):643.[doi:10.3724/SP.J.1249.2018.06643]
 YANG Shaowei,LAI Hongzhi,PAN Binghong,et al.Minimum spacing between the mainline of highway mutual confluence and the mainline exit[J].Journal of Shenzhen University Science and Engineering,2018,35(1):643.[doi:10.3724/SP.J.1249.2018.06643]
[3]潘兵宏,等.新型非常规U型转弯交叉口的运行效率研究[J].深圳大学学报理工版,2020,37(3):305.[doi:10.3724/SP.J.1249.2020.03305]
 PAN Binghong,SHAN Huimin,REN Hui,et al.Operational efficiency of new unconventional U-turn intersection[J].Journal of Shenzhen University Science and Engineering,2020,37(1):305.[doi:10.3724/SP.J.1249.2020.03305]
[4]潘兵宏,等.新型立体环形交叉口的运行效率研究[J].深圳大学学报理工版,2020,37(6):630.[doi:10.3724/SP.J.1249.2020.06630]
 PAN Binghong,ZHOU Tingwen,et al.Operational efficiency of new stereo roundabouts[J].Journal of Shenzhen University Science and Engineering,2020,37(1):630.[doi:10.3724/SP.J.1249.2020.06630]
[5]贾富强,杨信丰,代存杰,等.考虑风险规避的出行路径选择行为分析[J].深圳大学学报理工版,2022,39(2):177.[doi:10.3724/SP.J.1249.2022.02177]
 JIA Fuqiang,YANG Xinfeng,DAI Cunjie,et al.Behavior analysis of travel route selection with consideration of risk aversion[J].Journal of Shenzhen University Science and Engineering,2022,39(1):177.[doi:10.3724/SP.J.1249.2022.02177]
[6]潘兵宏,刘娟,柴虎,等.苜蓿叶立交集散车道连续入出口最小间距研究[J].深圳大学学报理工版,2022,39(3):305.[doi:10.3724/SP.J.1249.2022.03305]
 PAN Binghong,LIU Juan,CHAI Hu,et al.Minimum spacing of continuous entrance and exit on the collector-distributor road of alfalfa leaf interchange[J].Journal of Shenzhen University Science and Engineering,2022,39(1):305.[doi:10.3724/SP.J.1249.2022.03305]

备注/Memo

备注/Memo:
Received: 2022- 06-19; Accepted: 2022-08-09; Online (CNKI): 2022-10-10
Foundation: National Natural Science Foundation of China (51908187)
Corresponding author: Associate professor LI Xia.E-mail: diyilixi@126.com
Citation: LI Xia, GUO Mengting, ZHANG Xiaoming, et al. Analysis of driver’s car-following intention based on extended planning behavior theory [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(1): 118-126.(in Chinese)
基金项目:国家自然科学基金资助项目(51908187)
作者简介:李霞(1981—),河北工业大学副教授、博士.研究方向:交通运输规划管理与控制.E-mail: diyilixi@126.com
引文:李霞,郭梦婷,张孝铭,等.基于扩展计划行为理论的驾驶员跟驰意向分析[J].深圳大学学报理工版,2023,40(1):118-126.
更新日期/Last Update: 2023-01-30