[1]李军,区静怡,赵文婷.下车信息对公交乘客精细化分类影响研究[J].深圳大学学报理工版,2023,40(1):109-117.[doi:10.3724/SP.J.1249.2023.01109]
 LI Jun,OU Jingyi,and ZHAO Wenting.Impact of bus alighting information on fine classification of transit riders[J].Journal of Shenzhen University Science and Engineering,2023,40(1):109-117.[doi:10.3724/SP.J.1249.2023.01109]
点击复制

下车信息对公交乘客精细化分类影响研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第1期
页码:
109-117
栏目:
交通物流
出版日期:
2023-01-06

文章信息/Info

Title:
Impact of bus alighting information on fine classification of transit riders
文章编号:
202301013
作者:
李军区静怡赵文婷
中山大学智能工程学院,广东广州 510006
Author(s):
LI Jun OU Jingyi and ZHAO Wenting
transport engineering; public transit; rider classification; bus alighting information; combined clustering; travel characteristics
关键词:
交通运输工程公共交通乘客分类下车信息组合聚类出行特征
Keywords:
transport engineering public transit rider classification bus alighting information combined clustering travel characteristics
分类号:
U121
DOI:
10.3724/SP.J.1249.2023.01109
文献标志码:
A
摘要:
目前广泛采用的公交一票制缺乏下车信息,利用一票制数据得到的乘客分类需要进行精细化分类效果评估.本研究利用包含下车站点的大规模公交票务数据,对比分析了有无下车信息下的分类模型,探究下车信息缺失对乘客分类的影响.采用分类指标和组合聚类方法对公交乘客进行精细化分类,选取中国北京市路面公交连续28 d的乘客上下车数据作为实例,分析下车信息及分类指标对分类结果的影响.结果表明,有无下车信息的2个模型均能实现乘客的有效分类,分类结果都能体现每类乘客的时空活动规律.其中,包含下车信息的分类模型能够识别具有明显出行距离特征的小样本群体,如占比0.25%的长距离出行乘客等特殊群体;而缺少下车信息的分类模型类别平均占比标准差远小于包含下车信息的分类模型,分类结果相对均衡,且各类别乘客在多维度上的规律差异显著,更能体现分类的宏观特征.
Abstract:
The widely used bus one ticket system lacks off boarding information, and the passenger classification based on the dataset of one-ticket bus system needs to be refined to evaluate the classification effect. This study uses the large-scale bus ticket data with alighting information to compare and analyze the transit rider classification models with and without the alighting information to explore the impact of the missing alighting information on the fine classification of transit riders. The classification indexes and combined clustering method are adopted to refine the classification of bus passengers. A case study of Beijing conventional buses which contain boarding and alighting data of 28 consecutive days is presented and used to analyze the impact of bus alighting data and classification indexes on the transit rider classification results. The result indicates that both models successfully complete the fine classification of the riders and reflect the spatio-temporal characteristics of each type of riders. The model with alighting information is able to identify the distance-concerned type with few samples such as the long-distance transit riders accounting for 0.25%. The standard deviation of the average proportion of categories in the model without alighting information is much smaller than that in the model with alighting information. The results obtained from the model without alighting information are more balanced, and the regularity of various categories of passengers in multiple dimensions is significantly different, which can better reflect the macro characteristics of classification.

参考文献/References:

[1] 刘敏,赵磊,刘祥锋,等.中小城市公交票价体系改革策略[J].交通与运输,2020,36(1):79-83.
LIU Min, ZHAO Lei, LIU Xiangfeng, et al. Reform strategy of bus ticket system in small and medium-sized cities [J]. Traffic and Transportation, 2020, 36(1): 79-83.(in Chinese)
[2] 焦朋朋,赵霞,张勇,等.基于交通大数据的移动模式分析综述[J].中国公路学报,2021,34(12):175-202.
JIAO Pengpeng, ZHAO Xia, ZHANG Yong, et al. Review of human mobility pattern analysis based on big transportation data [J]. China Journal of Highway and Transport, 2021, 34(12): 175-202.(in Chinese)
[3] CHAPLEAU R, TR?PANIER M, CHU K K A. The ultimate survey for transit planning: complete information with smartcard data and GIS [C]// Conference of the IEEE Industrial Electronics Society. Lac d’Annecy, France: IEEE, 2008.
[4] CHOO S, MOKHTARIAN P L. What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice [J]. Transportation Research Part A: Policy and Practice, 2004, 38(3): 201-222.
[5] 杨敏,王炜,陈学武,等.工作者通勤出行活动模式的选择行为[J].西南交通大学学报,2009,44(2):274-279.
YANG Min, WANG Wei, CHEN Xuewu, et al. Activity pattern choice of work commuting trip by workers [J]. Journal of Southwest Jiaotong University, 2009, 44(2): 274-279.(in Chinese)
[6] 吴静娴,杨敏,陈学武,等.基于Nested Logit模型和蒙特卡罗法的通勤者活动链模拟[J].交通运输工程与信息学报,2016,14(2):76-82.
WU Jingxian, YANG Min, CHEN Xuewu, et al. Simulation of commuter’s activity chain based on Nested Logit model and Monte Carlo method [J]. Journal of Transportation Enginerring and Information, 2016, 14(2): 76-82.(in Chinese)
[7] 狄迪,杨东援.基于人群分类的城市公交走廊客流分配模型[J].同济大学学报自然科学版,2016,44(2):235-241,275.
DI Di, YANG Dongyuan. A passenger-classification transportation assignment model for urban public traffic corridor [J]. Journal of Tongji University Natural Science, 2016, 44(2): 235-241, 275.(in Chinese)
[8] 陈伯阳,蒋明清,四兵锋,等.基于乘客个体属性的地铁客流分配算法及实证研究[J].北京交通大学学报,2015,39(6):39-47.
CHEN Boyang, JIANG Mingqing, SI Bingfeng, et al. Individual attributes based assignment model and empirical research for urban subway network [J]. Journal of Beijing Jiaotong University, 2015, 39(6): 39-47.(in Chinese)
[9] 彭昌溆,周雪梅,张道智,等.基于乘客感知的公交服务质量影响因素分析[J].交通信息与安全,2013,31(4):40-44.
PENG Changxu, ZHOU Xuemei, ZHANG Daozhi, et al. Factors affecting bus service quality based on passenger perception [J]. Journal of Transport Information and Safety, 2013, 31(4): 40-44.(in Chinese)
[10] TSAI C Y, CHIU C C. A purchase-based market segmentation methodology [J]. Expert Systems with Applications, 2004, 27(2): 265-276.
[11] MAHRSI M, C?ME E, OUKHELLOU L, et al. Clustering smart card data for urban mobility analysis [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(3): 712-728.
[12] 邹庆茹,赵鹏,姚向明.基于售检票数据的城市轨道交通乘客分类[J].交通运输系统工程与信息,2018,18(1):223-230.
ZOU Qingru, ZHAO Peng, YAO Xiangming. Passenger classification for urban rail transit by mining smart card data [J]. Journal of Transportation Systems Enginerring and Information Technology, 2018, 18(1): 223-230.(in Chinese)
[13] 李飞羽.城市轨道交通乘客行为特征分析及出行预测 [D].广州:华南理工大学,2020.
LI Feiyu. Feature analysis and travel forecast of passenger behavior in urban rail transit [D]. Guangzhou: South China University of Technology, 2020.(in Chinese)
[14] MA Xiaolei, WU Yaojian, WANG Yinhai, et al. Mining smart card data for transit riders’ travel patterns [J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 1-12.
[15] 林鹏飞,翁剑成,胡松,等.公共交通乘客个体活动链的日相似性研究[J].交通运输系统工程与信息,2020,20(6):178-183,204.
LIN Pengfei, WENG Jiancheng, HU Song, et al. Day-to-day similarity of individual activity chain of public transport passengers [J]. Journal of Transportation Systems Enginerring and Information Technology, 2020, 20(6): 178-183, 204.(in Chinese)
[16] 李军,邓红平.基于公交IC卡数据的乘客出行分类研究[J].重庆交通大学学报自然科学版,2016,35(6):109-114.
LI Jun, DENG Hongping. Classification of passenger’s travel behavior based on IC card data [J]. Journal of Chongqing Jiaotong University Natural Science, 2016, 35(6): 109-114.(in Chinese)
[17] 梁泉,翁剑成,周伟,等.基于关联规则的公共交通通勤稳定性人群辨识[J].吉林大学学报工学版,2019,49(5):1484-1491.
LIANG Quan, WENG Jiancheng, ZHOU Wei, et al. Stability identification of public transport commute passengersbased on association rules [J]. Journal of Jilin University Engineering and Technology Edition, 2019, 49(5): 1484-1491.(in Chinese)
[18] CHU K K A, CHAPLEAU R, TREPANIER M. Driver-assisted bus interview passive transit travel survey with smart card automatic fare collection system and applications [J]. Transportation Research Record, 2009, 2105(1): 1-10.
[19] 陈君,杨东援.基于APTS数据的公交卡乘客通勤OD分布估计方法[J].交通运输系统工程与信息,2013,13(4):47-53.
CHEN Jun, YANG Dongyuan. Estimating smart card commuters origin-destination distribution based on APTS data [J]. Journal of Transportation Systems Enginerring and Information Technology, 2013. 13(4): 47-53.(in Chinese)
[20] 刘靓.普适计算环境下居民交通行为特征研究[D].上海:同济大学,2008.
LIU Liang. Research on inhabitant travel behavior under pervasive computing environment [D]. Shanghai: Tongji University, 2008.(in Chinese)
[21] 陈修远.基于出行特性的公交乘客分类研究[D].成都:西南交通大学,2017.
CHEN Xiuyuan. Analyzing classification of bus passengers based on their trip characteristics [D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[22] 李海波,陈学武,陈峥嵘.基于公交IC卡和AVL数据的客流OD推导方法[J].交通信息与安全,2015,33(6):33-39,95.
LI Haibo, CHEN Xuewu, CHEN Zhengrong. A method for estimating origin-destination matrix of public transit based on smart card and AVL data [J]. Journal of Transport Information and Safety, 2015, 33(6): 33-39, 95.(in Chinese)
[23] 曾志南.基于智能交通卡数据的轨道出行乘客特征研究[C]// 共享与品质:中国城市规划年会,杭州:中国城市规划学会,2018.
ZENG Zhinan. Research on passenger characteristics of rail travel based on intelligent transportation card data [C]// Sharing and Quality: Proceeding of Annual National Planning Conference. Hangzhou: Urban Planning Society of China, 2018.(in Chinese)
[24] KIEU L M, BHASKAR A, CHUNG E. Passenger segmentation using smart card data [J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1537-1548.

相似文献/References:

[1]梅振宇,葛宏伟,项贻强.基于离散分布的公交站距优化模型[J].深圳大学学报理工版,2007,24(4):357.
 MEI Zhen-yu,GE Hong-wei,and XIANG Yi-qiang.A bus stop spacing optimizing model based on discrete distribution demand[J].Journal of Shenzhen University Science and Engineering,2007,24(1):357.
[2]韩彪,聂伟,王卫平,等.基于公交车站的可达性度量模型[J].深圳大学学报理工版,2013,30(No.1(001-110)):98.[doi:10.3724/SP.J.1249.2013.01098]
 Han Biao,Nie Wei,Wang Weiping,et al.Accessibility measurement model based on bus stop[J].Journal of Shenzhen University Science and Engineering,2013,30(1):98.[doi:10.3724/SP.J.1249.2013.01098]
[3]宗刚,吴彤.公共交通枢纽可达性测度及应用[J].深圳大学学报理工版,2016,33(5):544.[doi:10.3724/SP.J.1249.2016.05544]
 Zong Gang and Wu Tong.Measurement and application of accessibility of public transportation hub[J].Journal of Shenzhen University Science and Engineering,2016,33(1):544.[doi:10.3724/SP.J.1249.2016.05544]
[4]李伟,罗钦.基于逐步优化的轨道交通网络行车计划衔接[J].深圳大学学报理工版,2018,35(6):629.[doi:10.3724/SP.J.1249.2018.06629]
 LI Wei and LUO Qin.Rail transit network planning based on gradual optimization[J].Journal of Shenzhen University Science and Engineering,2018,35(1):629.[doi:10.3724/SP.J.1249.2018.06629]
[5]于泉,刘洋,郭骁伟.基于路口相关性的交通流量修复研究[J].深圳大学学报理工版,2019,36(3):304.[doi:10.3724/SP.J.1249.2019.03304]
 YU Quan,LIU Yang,and GUO Xiaowei.Restoration of traffic flow data based on intersection correlation[J].Journal of Shenzhen University Science and Engineering,2019,36(1):304.[doi:10.3724/SP.J.1249.2019.03304]
[6]邓连波,何渊,曾俊豪,等.需求可拆分下城轨关联的公交接驳线网优化[J].深圳大学学报理工版,2020,37(2):121.[doi:10.3724/SP.J.1249.2020.02121]
 DENG Lianbo,HE Yuan,ZENG Junhao,et al.Optimal design of feeder-bus network with split delivery[J].Journal of Shenzhen University Science and Engineering,2020,37(1):121.[doi:10.3724/SP.J.1249.2020.02121]
[7]贺云鹏,李建国.平面移动式立体车库客流状态聚类研究[J].深圳大学学报理工版,2020,37(3):314.[doi:10.3724/SP.J.1249.2020.03314]
 HE Yunpeng and LI Jianguo.Passenger flow state clustering in flat mobile automated garage[J].Journal of Shenzhen University Science and Engineering,2020,37(1):314.[doi:10.3724/SP.J.1249.2020.03314]
[8]周菁楠,李伟,罗钦.城轨车站大客流条件下列车运行调整[J].深圳大学学报理工版,2020,37(6):617.[doi:10.3724/SP.J.1249.2020.06617]
 ZHOU Jingnan,LI Wei,and LUO Qin.Adjustment for train operation under the condition of mass passenger flow in urban rail transit[J].Journal of Shenzhen University Science and Engineering,2020,37(1):617.[doi:10.3724/SP.J.1249.2020.06617]
[9]胡明伟,等.基于系统动力学的地铁客流防疫调控仿真分析[J].深圳大学学报理工版,2021,38(2):111.[doi:10.3724/SP.J.1249.2021.02111]
 HU Mingwei,,et al.Simulation analysis of epidemic prevention and regulation for metro passenger flow based on system dynamics[J].Journal of Shenzhen University Science and Engineering,2021,38(1):111.[doi:10.3724/SP.J.1249.2021.02111]
[10]杨波,李建国,康耀军.立体车库顾客到达的非齐次泊松过程模拟仿真[J].深圳大学学报理工版,2021,38(2):121.[doi:10.3724/SP.J.1249.2021.02121]
 YANG Bo,LI Jianguo,and KANG Yaojun.Simulation of non-homogeneous Poisson process of customer arrival in stereo garage[J].Journal of Shenzhen University Science and Engineering,2021,38(1):121.[doi:10.3724/SP.J.1249.2021.02121]
[11]李军,郑培庆.城市公交过剩通勤分析与评价——以广州市为例[J].深圳大学学报理工版,2020,37(6):623.[doi:10.3724/SP.J.1249.2020.06623]
 LI Jun and ZHENG Peiqing.Analyzing and evaluating of the urban transit excess commuting: a case study of Guangzhou City[J].Journal of Shenzhen University Science and Engineering,2020,37(1):623.[doi:10.3724/SP.J.1249.2020.06623]
[12]胡迪,靳文舟.基于站点优化的需求响应公交调度研究[J].深圳大学学报理工版,2022,39(2):209.[doi:10.3724/SP.J.1249.2022.02209]
 HU Di and JIN Wenzhou.Flex-route demand response transit scheduling based on station optimization[J].Journal of Shenzhen University Science and Engineering,2022,39(1):209.[doi:10.3724/SP.J.1249.2022.02209]

备注/Memo

备注/Memo:
Received: 2022- 05-23; Accepted: 2022-06-25; Online (CNKI): 2022-10-10
Foundation: Research and Development Project in Key Areas of Guangdong Province (2019B090913001)
Corresponding author: Associate professor LI Jun. E-mail: stslijun@mail.sysu.edu.cn
Citation: LI Jun, OU Jingyi, ZHAO Wenting. Impact of bus alighting information on fine classification of transit riders [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(1): 109-117.(in Chinese)
基金项目:广东省重点领域研发计划资助项目(2019B090913001)
作者简介:李军(1968—),中山大学副教授、博士生导师.研究方向:交通运输规划与管理.E-mail: stslijun@mail.sysu.edu.cn
引文:李军,区静怡,赵文婷.下车信息对公交乘客精细化分类影响研究[J].深圳大学学报理工版,2023,40(1):109-117.
更新日期/Last Update: 2023-01-30