[1]刘子琪,程晓辉.基于TTS本构模型真三轴条件下的热蠕变研究[J].深圳大学学报理工版,2023,40(1):74-82.[doi:10.3724/SP.J.1249.2023.01074]
 LIU Ziqi and CHENG Xiaohui.Simulation of thermal creep under true triaxial conditions based on TTS constitutive model[J].Journal of Shenzhen University Science and Engineering,2023,40(1):74-82.[doi:10.3724/SP.J.1249.2023.01074]
点击复制

基于TTS本构模型真三轴条件下的热蠕变研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第1期
页码:
74-82
栏目:
土木建筑工程
出版日期:
2023-01-06

文章信息/Info

Title:
Simulation of thermal creep under true triaxial conditions based on TTS constitutive model
文章编号:
202301009
作者:
刘子琪程晓辉
清华大学土木工程系,北京 100084
Author(s):
LIU Ziqi and CHENG Xiaohui
Department of Civil Engineering, Tsinghua University, Beijing 100084, P.R.China
关键词:
岩土工程平面应变热蠕变温度循环应力历史清华热力学岩土本构模型
Keywords:
geotechnical engineering plain strain thermal creep thermal cycles stress history Tsinghua thermodynamical soil constitutive model
分类号:
TU432
DOI:
10.3724/SP.J.1249.2023.01074
文献标志码:
A
摘要:
真三轴条件下单调和循环温度荷载显著影响土体轴向、径向变形和侧压力系数,对能源地下结构抗裂、沉降控制及承载力设计提出了挑战.基于清华热力学岩土(Tsinghua thermodynamical soil, TTS)本构模型及Matlab点源求解程序,开展一维压缩和平面应变状态下饱和黏土和粉土的排水热蠕变模拟.分析一维侧限条件下超固结比(over consolidated ratio, OCR)和温度循环对热蠕变的影响;预测OCR及温度循环次数对侧压力系数的影响;模拟真三轴应力条件下各个主应力方向的热蠕变.TTS本构模型模拟的Bonny粉土真三轴排水条件下热蠕变方向和大小与试验结果符合,预测的相同试验条件下Bangkok软黏土温度蠕变幅值更大.结果表明,TTS本构模型可以合理描述真三轴条件下各主应力方向收缩或膨胀的热蠕变及温度剪应变.研究可为能源桩侧摩阻承载力设计提供参考.
Abstract:
Monotonic and cyclic thermal loading significantly affect the axial and radial deformation, and lateral pressure coefficient of soil under true triaxial conditions, which poses new challenges to the crack resistance, settlement control and bearing capacity design of underground energy structures.Thermal creep simulation is carried out for saturated clay and silt under 1D compression and plane strain in drained situation based on the Tsinghua thermodynamical soil (TTS) constitutive model and its Matlab model driver.The effect of over consolidated ratio (OCR) and thermal cycles on thermal creep and lateral earth pressure coefficient under 1D confined condition is predicted, and the effect of true triaxial stress conditions on thermal creep of different principal stress direction is simulated.The simulated thermal creep direction and magnitude of bonny silt by TTS under true triaxial drained condition are consistent with the test results.The temperature creep amplitude of Bangkok soft clay is greater than that of Bonny silt under the same test condition.The results show that the thermal shrinkage or expansion creep in each principal stress direction and temperature shear strain under true triaxial condition can be reasonably described by TTS.The research can provide reference for the design of the side friction bearing capacity of energy piles.

参考文献/References:

[1] BOURNE-WEBB P J, AMIS T, AMATYA B L, et al.Thermo mechanical behaviour of energy piles [J].Géotechnique, 2012, 62(6): 503-519.
[2] ZYMNIS D M, WHITTLE A J.Geotechnical considerations in the design of borehole heat exchangers [J].Canadian Geotechnical Journal, 2021, 58 (9): 1247-1262.
[3] KONG Gangqiang, FANG Jincheng, HUANG Xu, et al.Thermal induced horizontal earth pressure changes of pipe energy piles under multiple heating cycles [J]. Geomechanics for Energy and the Environment, 2021, 26: 100228.
[4] ATKINSON J.The mechanics of soils and foundations, second edition [M].New York, USA: Taylor & Francis e-Library, 2007: 372.
[5] 张志超.饱和岩土体多场耦合热力学本构理论及模型研究[D].北京:清华大学,2013.
ZHANG Zhichao.Research on multi-field coupling thermodynamic constitutive theory and model for saturated geomaterials [D]. Beijing: Tsinghua University, 2013.(in Chinese)
[6] COCCIA C R, MCCARTNEY J.A thermo hydro mechanical true triaxial cell for evaluation of the impact of anisotropy on thermally induced volume changes in soils [J].Geotechnical Testing Journal, 2012, 35(2): 227-237.
[7] HUECKEL T, BALDI G.Thermo plasticity of saturated clays: experimental constitutive study [J]. Journal of Geotechnical Engineering, 1990, 116(12): 1778-1796.
[8] LALOUI L, FRANCOIS B.ACMEG-T: soil thermo-plasticity model [J]. Journal of Engineering Mechanics, 2009, 135(9): 932-944.
[9] ABUEL-NAGA H M, BERGADO D T, RAMANA G V. Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature [J]. Journal of Geotechnical and Geo-environmental Engineering, 2006, 132(7): 902-910.
[10] MAYNE P W, KULHAWY F H. K0-OCR relationships in soil [J]. Journal of the Geotechnical Engineering Division, 1982, 108: 851-872.
[11] ZHOU Chao, FONG K Y, NG C W W.A new bounding surface model for thermal cyclic behavior [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(16): 1656-1666.
[12] Plaxis. 2D-material models manual [M]. [S.l.]: Bently, 2017: 28-31.
[13] YAZDANI S, HELWANY S, OLGUN G. Influence of temperature on soil-pile interface shear strength [J]. Geomechanics for Energy and the Environment, 2019, 18(6): 69-78.
[14] MCCARTNEY J S, ROSENBERG J E.Impact of heat exchange on side shear in thermo-active foundations [C]// Geo-Frontiers: Advances in Geotechnical Engineering. [S.l.]: ASCE, 2011: 488-498.
[15] ZHANG Zhichao, CHENG Xiaohui.A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics [J].Computers and Geotechnics, 2016, 80(12): 373-382.
[16] 蒋亦民,刘佑.砂土的流体动力学方程与本构模型的比较[J].岩土力学,2010,31(6):1729-1738.
JIANG Yimin, LIU You.Comparison between granular solid hydrodynamics equations and constitutive model of sand [J]. Rock and Soil Mechanics, 2010, 31(6): 1729-1738.(in Chinese)
[17] ZYMNIS D M, WHITTLE A J, CHENG Xiaohui. TTS model for thermo-mechanical behavior of clay [J]. Geotechnical Engineering for Infrastructure and Development, 2015, 7(1): 4109-4114.
[18] 陈志辉,程晓辉.饱和黏土不排水抗剪强度各向异性的热力学本构模型研究[J].岩土工程学报,2014,36(5):836-846.
CHEN Zhihui, CHENG Xiaohui.Study on thermodynamic constitutive model of undrained shear strength anisotropy of saturated clay [J].Chinese Journal of Geotechnical Engineering, 2014, 36(5): 836-846.(in Chinese)
[19] SHANINA M.Assessment of anisotropy effects on the thermal volume change of unsaturated bonny silt using a thermo-hydro-mechanical true-triaxial cell [D].Boulder: University of Colorado at Boulder, 2015.
[20] WANG Hao, CHENG Xiaohui, CHU Jian. Finite element analyses of rate-dependent thermo-hydro-mechanical behaviors of clayey soils based on thermodynamics [J]. Acta Geotechnica, 2021, 16(1): 1829-1847.
[21] 王浩.饱和岩土体多尺度多场耦合热力学本构研究与有限元分析[D].北京:清华大学,2018.
WANG Hao.Research on multi-scale and multi-field thermodynamic constitutive model and its finite element implementation for saturated geomaterials [D]. Beijing: Tsinghua University, 2018.(in Chinese)

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
Received: 2021- 12-08; Accepted: 2022-04-26; Online (CNKI): 2022-12-15
Foundation: National Natural Science Foundation of China (51778338, 52078274)
Corresponding author: Associate professor CHENG Xiaohui. E-mail: chengxh@tsinghua.edu.cn
Citation: LIU Ziqi, CHENG Xiaohui. Simulation of thermal creep under true triaxial conditions based on TTS constitutive model [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(1): 74-82.(in Chinese)
基金项目:国家自然科学基金资助项目(51778338, 52078274)
作者简介:刘子琪(1998-),清华大学博士研究生.研究方向:岩土本构及有限元计算,能源地下结构.E-mail: zq-liu20@mails.tsinghua.edu.cn
引文:刘子琪,程晓辉.基于TTS本构模型真三轴条件下的热蠕变研究[J].深圳大学学报理工版,2023,40(1):74-82.
更新日期/Last Update: 2023-01-30