[1]梁成钢,李菊花,陈依伟,等.基于朴素贝叶斯算法评估页岩油藏产能[J].深圳大学学报理工版,2023,40(1):66-73.[doi:10.3724/SP.J.1249.2023.01066]
 LIANG Chenggang,LI Juhua,CHEN Yiwei,et al.Productivity evaluation based on naive Bayesian algorithm in shale reservoir[J].Journal of Shenzhen University Science and Engineering,2023,40(1):66-73.[doi:10.3724/SP.J.1249.2023.01066]
点击复制

基于朴素贝叶斯算法评估页岩油藏产能()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第1期
页码:
66-73
栏目:
环境与能源
出版日期:
2023-01-06

文章信息/Info

Title:
Productivity evaluation based on naive Bayesian algorithm in shale reservoir
文章编号:
202301008
作者:
梁成钢1李菊花2陈依伟1秦顺利2张金风1胡可1
1)中国石油新疆油田分公司吉庆油田作业区,新疆吉木萨尔 831700
2)长江大学石油工程学院,湖北武汉 430100
Author(s):
LIANG Chenggang1 LI Juhua2 CHEN Yiwei1 QIN Shunli2 ZHANG Jinfeng1 and HU Ke1
1) Jiqing Oilfield Operation Area of Xinjiang Oilfield Company, CNPC, Karamay 831700, Xinjiang Uygur Autonomous Region, P.R.China
2) School of Petroleum Engineering, Yangtze University, Wuhan 430100, Hubei Province, P.R.China
关键词:
油田开发页岩油压裂水平井朴素贝叶斯算法概率模型产能评估吉木萨尔
Keywords:
oilfield development shale oil fractured horizontal well naive Bayesian algorithm probability model productivity evaluation Jimsar
分类号:
TE349
DOI:
10.3724/SP.J.1249.2023.01066
文献标志码:
A
摘要:
作为非常规油气资源,页岩油储量巨大,是重要的接替资源,高效开发页岩油藏具有十分重要的意义.针对页岩油藏“水平井+体积压裂”衰竭式开发产量递减快,现有产能评价方法预测采收率低的问题,基于朴素贝叶斯算法构建压裂水平井产能评估方法.以新疆油田吉木萨尔页岩油藏为研究对象,以3 a累产作为分类评价指标,分别建立多分类的朴素贝叶斯先验概率模型以及包括地质参数和工程参数2类共5项属性的条件概率模型,得到基于贝叶斯理论计算的4类产能后验概率模型,实现页岩油藏压裂水平井产能评估.结果表明,基于朴素贝叶斯算法得到的页岩油藏产能分类方法适用性高,产能预测准确率分别为Ⅰ类井94%,Ⅱ类井为71%,Ⅲ类井为87%,Ⅳ类井为92%;绘制了吉木萨尔页岩油藏压裂水平井产能分级趋势分布图,评估高产潜力区主要分布在油藏东南部;构建的后验概率模型指出,优化压裂施工参数可提升高产概率,为后续的水平井大规模压裂改造开发页岩油提供指导依据.
Abstract:
Shale oil, as an unconventional oil and gas resource with huge reserves, has become an important replacement resource and great significance to develop. Aiming at the problems of rapid decline oil production in the depletion development of shale oil reservoirs by "depleted horizontal well+volume fracturing", and the lower recovery factor predicted by the existing productivity evaluation methods in shale reservoir, we construct a productivity evaluation method for fractured horizontal wells based on naive Bayes algorithm. Taking the Jimsar shale reservoir in Xinjiang oilfield as the target reservoir, we establish the multi-classification Naive Bayes prior probability model and the conditional probability model containing five attributes of geological parameters and engineering parameters by taking the three-year cumulative production as the classification evaluation index. Then we obtain the posterior-probability model of the four types of production capacity based on Bayesian theory to achieve the capacity assessment of fractured horizontal wells in shale oil reservoirs. The results show that the proposed shale reservoir capacity classification method based on the Naive Bayes model is applicable. The accuracy of productivity prediction is 94% for Class Ⅰ wells, 71% for Class Ⅱ wells, 87% for Class Ⅲ wells, and 92% for Class Ⅳ wells, respectively. The productivity classification trend distribution map of fracturing horizontal wells in Jimsar shale reservoir is drawn, and the high-production potential area is mainly distributed in the southeast of the reservoir. The analysis of the constructed posterior probability model shows that the optimization of fracturing construction parameters can improve the probability of high well production rate. The study provides a guiding basis for the subsequent large-scale fracturing reconstruction of horizontal wells for shale oil development.

参考文献/References:

[1] 张宸嘉,曹剑,王俞策,等.准噶尔盆地吉木萨尔凹陷芦草沟组页岩油富集规律[J].石油学报,2022,43(9):1253-1268.
ZHANG Chenjia, CAO Jian, WANG Yuce, et al. Shale oil enrichment law of Lucaogou Formation in Jimsar Sag in Junggar Basin [J]. Acta Petrolei Sinica, 2022, 43(9): 1253-1268.(in Chinese)
[2] 贾曙光,王军,王玲玲,等.吉木萨尔凹陷芦草沟组页岩油甜点地震预测方法[J].新疆石油地质,2020,41(5):535-541.
JIA Shuguang, WANG Jun, WANG Lingling, et al. Seismic prediction method of shale oil dessert in the Lucaogou Formation of Jimsar Sag [J]. Xinjiang Petroleum Geology,2020, 41(5): 535-541.(in Chinese)
[3] 王林生,叶义平,覃建华,等.陆相页岩油储层微观孔喉结构表征与含油性分级评价——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J].石油与天然气地质,2022,43(1):149-160.
WANG Linsheng, YE Yiping, QIN Jianhua, et al. Micropore throat structure characterization and oiliness grading evaluation of continental shale oil reservoirs: a case study of the Permian Lucaogou Formation in Jimsar sag in Junggar Basin [J]. Oil & Gas Geology, 2022,43(1):149-160.(in Chinese)
[4] 赵振峰,李楷,赵鹏云,等.鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J].石油钻探技术,2021,49(4):85-91.
ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos basin [J]. Petroleum Drilling Techniques, 2021, 49(4): 85-91.(in Chinese)
[5] 吴承美,许长福,陈依伟,等.吉木萨尔页岩油水平井开采实践[J].西南石油大学学报自然科学版,2021,43(5):33-41.
WU Chengmei, XU Changfu, CHEN Yiwei, et al. The horizontal well exploitation practice of Jimsar Shale Oil [J]. Journal of Southwest Petroleum University Science & Technology Edition, 2021, 43(5): 33-41.(in Chinese)
[6] 刘文锋,张旭阳,张小栓,等.致密油多段压裂水平井产能预测方法[J].新疆石油地质,2019,40(6):731-735.
LIU Wenfeng, ZHANG Xuyang, ZHANG Xiaoshuan, et al. Production capacity prediction method of tight oil multi-stage fracturing horizontal well [J]. Xinjiang Petroleum Geology, 2019, 40(6): 731-735.(in Chinese)
[7] 马先林,周德胜,蔡文斌,李宪文,何明舫.基于可解释机器学习的水平井产能预测方法[J].西南石油大学学报自然科学版,2022,44(4):81-90.
MA Xianlin, ZHOU Desheng, CAI Wenbin, et al. Horizontal well capacity prediction method based on explainable machine learning [J]. Journal of Southwest Petroleum University Natural Science Edition, 2022, 44(4): 81-90.(in Chinese)
[8] 纪磊,李菊花,肖佳林.随机森林算法在页岩气田多段压裂改造中的应用[J].大庆石油地质与开发,2020,39(6):168-174.
JI Lei, LI Juhua, XIAO Jialin. Application of random forest algorithm in the multistage fracturing stimulation of shale gas field [J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(6): 168-174.(in Chinese)
[9] 周志华.机器学习[M].北京:清华大学出版社,2016:12-13.
ZHOU Zhihua. Machine learning [M]. Beijing: Tsinghua University Press, 2016: 12-13.(in Chinese)
[10] 姜毅.基于贝叶斯网络模型的泥石流灾害经济损失风险评估[D].昆明:云南大学,2019.
JIANG Yi. Risk assessment of economic loss in debris flow disasters based on Bayesian network [D]. Kunming: Yunnan University, 2019.(in Chinese)
[11] 刘瑞.基于贝叶斯网络的洪水灾害风险评估与建模研究[D].上海:华东师范大学,2016.
LIU Rui. A study on modeling of flood risk evaluation based on Bayesian networks [D]. Shanghai: East China Normal University, 2016.(in Chinese)
[12] 杨立洪,李琼阳,李兴耀.基于信息值的相关属性约减——加权二分类朴素贝叶斯算法研究[J].统计与决策,2018,34(2):23-26.
YANG Lihong, LI Qiongyang, LI Xingyao. Research on relevant attribute reduction: weighted binary classification naive Bayesian algorithm based on value of information [J]. Statistics and Decision, 2018, 34(2): 23-26.(in Chinese)
[13] 朱璇,袁彬,同元辉,等.致密低渗油藏压裂井网气驱深度学习预测模型[J].深圳大学学报理工版,2022,39(5):559-566.
ZHU Xuan, YUAN Bin, TONG Yuanhui, et al. Deep-learning-based proxy model for forecasting gas flooding performance of fractured well pattern in tight oil reservoirs [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(5): 559-566.(in Chinese)
[14] 王武亮,江辉.基于多任务贝叶斯压缩感知的电能质量信号重构[J].深圳大学学报理工版,2021,38(1):77-84.
WANG Wuliang, JIANG Hui. Power quality signal reconstruction based on multitask Bayesian compressive sensing [J]. Journal of Shenzhen University Science and Engineering, 2021, 38(1): 77-84.(in Chinese)
[15] 李楚进,付泽正.对朴素贝叶斯分类器的改进[J].统计与决策,2016(21):9-11.
LI Chujin, FU Zezheng. Improvement of naive Bayesian classifier [J]. Statistics and Decision, 2016 (21): 9-11.(in Chinese)
[16] 王娟,梁立星,武璠,等.数据挖掘技术在数字化油气藏研究与决策中的应用[J].钻采工艺,2018,41(3):107-109.
WANG Juan, LIANG Lixing, WU Fan, et al. Application of data mining technology in digital reservoir study and strategy planning [J]. Drilling and Production Technology, 2018, 41(3): 107-109.(in Chinese)
[17] BOROUGHANI M, SOLTANI S, GHEZELSEFLU N, et al. A comparative assessment between artificial neural network, neuro-fuzzy, and support vector machine models in splash erosion modelling under simulation circumstances [J]. Folia Oecologica, 2022, 49(1): 23-34.
[18] OYETADE I S, AYENI J O, OGUNDE A O, et al. Hybridized deep convolutional neural network and fuzzy support vector machines for breast cancer detection [J]. SN Computer Science, 2021, 3(1): 58.
[19] 吴璐.基于SVM-RFE特征选择的规则提取方法[J].微型电脑应用,2021,37(9):150-154.
WU Lu. Rule extraction method based on SVM-RFE feature selection [J]. Microcomputer Applications, 2021, 37(9): 150-154.(in Chinese)
[20] 于营,杨婷婷,杨博雄.混淆矩阵分类性能评价及Python实现[J].现代计算机,2021(20):70-73,79.
YU Ying, YANG Tingting, YANG Boxiong. Confusion matrix classification performance evaluation and Python implementation [J]. Modern Computer, 2021 (20): 70-73, 79.(in Chinese)
[21] 满涛,赵兴玲.CT在肺结核患者治疗中的指导价值及效能ROC曲线研究[J].当代医学,2021,27(28):139-140.
MAN Tao, ZHAO Xingling. Study on the guiding value and efficacy ROC curve of CT in the treatment of patients with pulmonary tuberculosis [J]. Contemporary Medicine, 2021, 27(28): 139-140.(in Chinese)
[22] 徐兵祥,白玉湖,陈岭,等.页岩油气产能预测新思路及方法流程[J].天然气技术与经济,2019,13(5):36-42.
XU Bingxiang, BAI Yuhu, CHEN Ling, et al. New ideas and workflow to predict shale-oil and shale-gas productivity [J]. Natural Gas Technology and Economy, 2019, 13(5): 36-42.(in Chinese)

相似文献/References:

[1]陈民锋,赵晶,赵梦盼,等.低渗透稠油油藏储量有效动用界限研究[J].深圳大学学报理工版,2013,30(No.2(111-220)):210.[doi:10.3724/SP.J.1249.2013.02210]
 Chen Minfeng,Zhao Jing,Zhao Mengpan,et al.Study on limits of effective drive in low-permeability heavy-oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2013,30(1):210.[doi:10.3724/SP.J.1249.2013.02210]
[2]陈民锋,李晓风,王敏,等.深水油田高饱和油藏能量合理补充时机研究[J].深圳大学学报理工版,2013,30(No.6(551-660)):649.[doi:10.3724/SP.J.1249.2013.06649]
 Chen Minfeng,Li Xiaofeng,Wang Min,et al.Reasonable opportune moment of energy supplement of high saturation reservoirs in deepwater oilfield[J].Journal of Shenzhen University Science and Engineering,2013,30(1):649.[doi:10.3724/SP.J.1249.2013.06649]
[3]廉培庆,陈志海,董广为,等.水平井与非均质盒式油藏耦合模型[J].深圳大学学报理工版,2015,32(3):266.[doi:10.3724/SP.J.1249.2015.03266]
 Lian Peiqing,Chen Zhihai,Dong Guangwei,et al.A coupling model for horizontal well in heterogeneous box-shaped reservoir[J].Journal of Shenzhen University Science and Engineering,2015,32(1):266.[doi:10.3724/SP.J.1249.2015.03266]
[4]杨智,邹才能,吴松涛,等.含油气致密储层纳米级孔喉特征及意义[J].深圳大学学报理工版,2015,32(3):257.[doi:10.3724/SP.J.1249.2015.03257]
 Yang Zhi,Zou Caineng,Wu Songtao,et al.Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J].Journal of Shenzhen University Science and Engineering,2015,32(1):257.[doi:10.3724/SP.J.1249.2015.03257]
[5]李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
 Li Shuai,Ding Yunhong,Liu Guangfeng,et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J].Journal of Shenzhen University Science and Engineering,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
[6]陈民锋,王兆琪,张琪琛,等.启动压力影响下注采井间有效驱替规律[J].深圳大学学报理工版,2017,34(1):91.[doi:10.3724/SP.J.1249.2017.01091]
 Chen Minfeng,Wang Zhaoqi,Zhang Qichen,et al.Effective displacement rules for interwell with threshold pressure[J].Journal of Shenzhen University Science and Engineering,2017,34(1):91.[doi:10.3724/SP.J.1249.2017.01091]
[7]杨智,邹才能,付金华,等.基于原位转化/改质技术的陆相页岩选区评价——以鄂尔多斯盆地三叠系延长组7段页岩为例[J].深圳大学学报理工版,2017,34(3):221.[doi:10.3724/SP.J.1249.2017.03221]
 Yang Zhi,Zou Caineng,Fu Jinhua,et al.Selection of pilot areas for testing in-situ conversion/upgrading processing in lacustrine shale: a case study of Yanchang-7 member in Ordos Basin[J].Journal of Shenzhen University Science and Engineering,2017,34(1):221.[doi:10.3724/SP.J.1249.2017.03221]
[8]张贤松,谢晓庆,康晓东,等.非均质油藏聚合物驱注入参数优化方法改进与应用[J].深圳大学学报理工版,2018,35(4):362.[doi:10.3724/SP.J.1249.2018.04362]
 ZHANG Xiansong,XIE Xiaoqing,KANG Xiaodong,et al.An improved optimization method and application for injection parameter of polymer flooding for heterogeneous reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(1):362.[doi:10.3724/SP.J.1249.2018.04362]
[9]张继成,范佳乐,匡力,等.一种预测特高含水期开发指标的联解法[J].深圳大学学报理工版,2018,35(6):558.[doi:10.3724/SP.J.1249.2018.06574]
 ZHANG Jicheng,FAN Jiale,KUANG Li,et al.An integrated method for predicting the development index of extra-high water cut period[J].Journal of Shenzhen University Science and Engineering,2018,35(1):558.[doi:10.3724/SP.J.1249.2018.06574]
[10]苏泽中,林加恩,柏明星,等.天然能量开发阶段的缝洞型油藏井间连通性分析[J].深圳大学学报理工版,2020,37(6):645.[doi:10.3724/SP.J.1249.2020.06645]
 SU Zezhong,LIN Jiaen,BAI Mingxing,et al.Inter-well connectivity analysis in carbonate fracture-vuggy reservoir in natural energy development stage[J].Journal of Shenzhen University Science and Engineering,2020,37(1):645.[doi:10.3724/SP.J.1249.2020.06645]
[11]苏玉亮,王瀚,詹世远,等.页岩油微尺度流动表征及模拟研究进展[J].深圳大学学报理工版,2021,38(6):579.[doi:10.3724/SP.J.1249.2021.06579]
 SU Yuliang,WANG Han,ZHAN Shiyuan,et al.Research progress on characterization and simulation of shale oil flow in microscale[J].Journal of Shenzhen University Science and Engineering,2021,38(1):579.[doi:10.3724/SP.J.1249.2021.06579]
[12]何小东,张景臣,王俊超,等.考虑天然裂缝条件下水平井压裂簇间距优化——以吉木萨尔页岩油为例[J].深圳大学学报理工版,2022,39(2):134.[doi:10.3724/SP.J.1249.2022.02134]
 HE Xiaodong,ZHANG Jingchen,WANG Junchao,et al.Optimization of fracturing cluster spacing of horizontal wells with natural fractures: taking Jimusar shale oil as an example[J].Journal of Shenzhen University Science and Engineering,2022,39(1):134.[doi:10.3724/SP.J.1249.2022.02134]

备注/Memo

备注/Memo:
Received: 2022- 03-25; Accepted: 2022-10-15; Online (CNKI): 2022-12-06
Foundation: National Science and Technology Major Special Program of China (2016ZX05060-019); Major Science and Technology Projects of Petro China (2019E26)
Corresponding author: Professor LI Juhua. E-mail: lucyli7509@163.com
Citation: LIANG Chenggang, LI Juhua, CHEN Yiwei, et al. Productivity evaluation based on naive Bayesian algorithm in shale reservoir [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(1): 66-73.(in Chinese)
基金项目:国家科技重大专项资助项目(2016ZX05060-019); 中国石油天然气股份有限公司重大科技专项资助项目(2019E26)
作者简介:梁成钢(1970—),新疆油田分公司高级工程师.研究方向:油气田开发. E-mai: liangcg@petrochina.com.cn
引文:梁成钢,李菊花,陈依伟,等.基于朴素贝叶斯算法评估页岩油藏产能[J].深圳大学学报理工版,2023,40(1):66-73.
更新日期/Last Update: 2023-01-30