CAI Xiaoping,DUAN Huabo,MA Yi,et al.Environmental impact assessment of wind turbine blades analysis based on life cycle[J].Journal of Shenzhen University Science and Engineering,2023,40(1):40-47.[doi:10.3724/SP.J.1249.2023.01040]





Environmental impact assessment of wind turbine blades analysis based on life cycle
1)深圳大学滨海城市韧性基础设施教育部重点实验室,深圳大学土木与交通工程学院,广东深圳 518060
2)深圳大学未来地下城市研究院,广东深圳 518060
3)中国环境科学研究院国家环境保护生态工业重点实验室,北京 100012
CAI Xiaoping1 DUAN Huabo1 2 MA Yi1 LI Qiangfeng1 and XIE Minghui3
1) Key Laboratory of Coastal Urban Resilient Infrastructures, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China
2) Underground Polis Academy, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China
3) Key Laboratory of Eco-Industry of Ministry of Environmental Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
renewable energy life cycle assessment (LCA) wind turbine blade production phase carbon emission reduction analysis carbon fiber and glass fiber mixtures cement kiln co-processing pollution mitigation and carbon reduction
风能是一种重要的可再生能源,具有天然绿色属性,但风机部件的生产制造和安装使用过程存在一定的生态环境影响.针对9类常用规格的叶片,选取酸化(acidification potential, AP)、富营养化(eutrophication potential, EP)、温室效应(global warming potential, GWP)和光化学臭氧合成(photochemical ozone creation potential, POCP)4个指标进行生命周期环境影响评价和对比分析.结果表明,单位长度叶片生产使用阶段造成的AP、EP、GWP和POCP环境影响分别约为7.5(以SO2当量计)、0.7(以PO43-当量计)、2.6 × 103(以CO2当量计)和0.9 kg/m(以C2H4当量计).以GWP指标为例,随着风机装机容量持续大幅增长以及风机叶片大量生产使用,预计到2030年和2060年仅风机叶片的碳排放总量(以CO2当量计)累计可达到2.3 × 107 t和2.0 × 108 t.通过使用碳-玻纤维复合材料和回收利用退役风电叶片等措施,可显著降低风机叶片对环境的影响.研究结果可为促进风机叶片产业低碳绿色发展提供依据,并为度量风机及风电场全生命环境影响提供参考.
Wind energy is an important renewable energy source with natural ’green’ properties. However there may be certain ecological and environmental impacts during the production, manufacturing and installation of wind turbine components. The existing studies mainly focus on the ecological and climatic impacts of wind farms, and lack the environmental impact analysis on production and manufacturing process of wind turbine components, such as blades. Based on the life cycle assessment method, this study examines the environmental impact of 9 different types of major specifications of wind turbine blades, with consideration of acidification potential (AP), eutrophication potential (EP), global warming potential (GWP) and photochemical ozone creation potential (POCP). The results show that the impacts of AP, EP, GWP and POCP per unit length blade are approximately 7.5 kgSO2 eq/m、0.7 kgPO43- eq/m、2.6 tCO2 eq/m and 0.9 kgC2H4 eq/m, respectively. Taking GWP impact as an example, it is predicted that the cumulative carbon emissions from wind turbine blades during the whole life cycles will reach 2.3 × 107 t and 2.0 × 108 t of CO2 eq in 2030 and 2060 at national level, respectively. The combined use of carbon fiber and glass fiber composites and the recycling of decommissioned wind turbine blades can significantly reduce the environmental impact. This study can promote the low-carbon and green development of wind turbine blade industry, and provide reference for measuring the environmental impact of wind turbines and wind farms.


[1] 杨举华,张力小,王长波,等.基于混合生命周期分析的我国海上风电场能耗及温室气体排放研究[J].环境科学学报,2017,37(2):786-792.
YANG Juhua, ZHANG Lixiao, WANG Changbo, et al. Energy consumption and greenhouse gas emission of an offshore wind farm in China: a hybrid life cycle assessment perspective [J]. Acta Scientiae Circumstantiae, 2017, 37(2): 786-792.(in Chinese)
[2] CHIPINDULA J, BOTLAGUDURU V, DU Hongbo, et al. Life cycle environmental impact of onshore and offshore wind farms in Texas [J]. Sustainability, 2018, 10(6): 2022.
[3] CLAUDIA C, MARIANE H A, TARANEH S. Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: a case study in British Columbia, Canada [J]. Resources, Conservation & Recycling, 2015, 105: 59-72.
[4] 唐荆,陈啸,杨科.风电叶片全寿命周期性能研究[J]. 风能,2017(1):58-61.
TANG Jing, CHEN Xiao, YANG Ke. Research on lifecycle performance of wind turbine blades [J]. Wind Energy Magazine, 2017(1): 58-61.(in Chinese)
[5] PIASECKA I, BADOWSKA-WITOS P, FLIZIKOWSKI J, et al. Control the system and environment of post-production wind turbine blade waste using life cycle models. Part 1: environmental transformation models [J]. Polymers, 2020, 12(8): 1828.
[6] BEAUSON J, LAURENT A, RUDOLPH D P, et al. The complex end-of-life of wind turbine blades: a review of the European context [J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111847.
[7] DEENEY P, NAGLE A J, GOUGH F, et al. End-of-life alternatives for wind turbine blades: sustainability indices based on the UN sustainable development goals [J]. Resources, Conservation and Recycling, 2021, 171: 105642.
[8] ANGELA J N, EMMA L D, LAWRENCE C B, et al. A comparative life cycle assessment between landfilling and co-processing of waste from decommissioned irish wind turbine blades [J]. Journal of Cleaner Production, 2020,277: 123321.
[9] 马艺,段华波,李强峰,等.基于生命周期分析的风电场GHGs减排效益[J].深圳大学学报理工版,2020,37(6):653-660.
MA Yi,DUAN Huabo,LI Qiangfeng,et al. Benefits of GHGs emission reduction of wind farm based on life cycle assessment [J]. Journal of Shenzhen University Science and Engineering, 2020, 37(6): 653-660.(in Chinese)
[10] CHIESURA G, STECHER H, PAGH J J. Blade materials selection influence on sustainability: a case study through LCA [J]. IOP Conference Series: Materials Science and Engineering, 2020, 942(1): 12011.
[11] GKANTOU M, REBELO C, BANIOTOPOULOS C C. Life cycle assessment of tall onshore hybrid steel wind turbine towers [J]. Energies, 2020, 13(15): 3950.
[12] FLIZIKOWSKI J, PIASECKA I, KRUSZELNICKA W, et al. Destruction assessment of wind power plastics blade [J]. Polimery, 2018, 63(5): 381-386.
[13] 中国可再生能源学会风能专业委员会,中国农业机械工业协会风力机械分会,国家可再生能源中心.2018年中国风电吊装容量统计简报[J].风能.2019(4):56-67.
Chinese Wind Energy Association of China Renewable Energy Society, China Association of Agricultural Machinery Manufacturers, Branch of Wind Machinery Manufacturers, China National Renewable Energy Center. China wind power installed capacity statistics bulletin in 2018 [J]. Wind Energy, 2019(4): 56-67.(in Chinese)
[14] 衣瑞建,张万钦,周捷,等.基于LCA方法沼渣沼液生产利用过程的环境影响分析[J].可再生能源,2015,33(2):301-307.
YI Ruijian, ZHANG Wanqin, ZHOU Jie, et al. Environmental impact analysis of biogas residue and biogas slurry production and utilization by LCA [J]. Renewable Energy Resources, 2015, 33(2): 301-307.(in Chinese)
[15] 王恰.2020—2060年中国风电装机规模及其CO2减排预测[J].生态经济,2021,37(7):13-21.
WANG Qia. Forecast of China’s wind power installed capacity and corresponding CO2 reduction from 2020 to 2060 [J]. Ecological Economy. 2021, 37(7): 13-21.(in Chinese)
[16] 王仲颖,赵勇强,时璟丽.中国中长期风电发展路线图[J].中国能源,2012,34(3):4.
WANG Zhongying, ZHAO Yongqiang, SHI Jingli. China’s mid- and long-term wind power development roadmap [J]. Energy of China, 2012, 34(3): 4.(in Chinese)
[17] MISHNAEVSKY L. Sustainable end-of-life management of wind turbine blades: overview of current and coming solutions [J]. Materials, 2021, 14(5): 1124.
[18] MURRAY R E, JENNE S, SNOWBERG D, et al. Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade [J]. Renewable Energy, 2019, 131: 111-119.
[19] 王海珍,颜晨,王兴波,等.CF/GF混杂复合材料性能分析及其在风电叶片上的应用[J].玻璃钢/复合材料,2014(11):67-71.
WANG Haizhen, YAN Chen, WANG Xingbo, et al. Performance analysis of CF/GF hybrid composites andits application in wind turbine blades [J]. Fiberglass Reinforced Plastics/Composites, 2014(11): 67-71.(in Chinese)
[20] MISHNAEVSKY L, THOMSEN K. Costs of repair of wind turbine blades: influence of technology aspects [J]. Wind Energy, 2020, 23(12): 2247-2255.
[21] 王冰佳,黄强,呼慧.复合材料及碳纤维在风力机叶片中的应用现状[J].电站系统工程,2019,35(3):43-45.
WANG Bingjia, HUANG Qiang, HU Hui. Application status and development of wind power blade carbon fiber composites [J]. Power System Engineering, 2019, 35(3): 43- 45.(in Chinese)
[22] KARI L. Recycling wind turbine blades [J]. Renewable Energy Focus, 2009, 9(7): 70-73.
[23] PAULSEN E B, ENEVOLDSEN P. A multidisciplinary review of recycling methods for end-of-life wind turbine blades [J]. Energies, 2021, 14: 4247.
[24] 许冬梅,张兴林,荆涛.废旧热固性复合材料绿色回收利用关键技术研究——以风电行业废弃风叶片为例[J]. 环境保护,2019,47(20):54-56.
XU Dongmei, ZHANG Xinglin, JING Tao. Research on key technologies of recycling and utilization of waste thermosetting composites such as waste wind blades in China’s wind power industry [J]. Environmental Protection, 2019, 47(20): 54-56.(in Chinese)
[25] PU Liu, CLAIRE Y B. Wind turbine blade waste in 2050 [J]. Waste Management, 2017, 62: 229-240.
[26] PHUONG A V D, CATHERINE A, ANNE-LAURE C. Economic and environmental assessment of recovery and disposal pathways for CFRP waste management [J]. Resources, Conservation & Recycling, 2018, 133: 63-75.
[27] European Composites Industry Association. Composites recycling made easy [EB/OL]. (2013-02-07)[2021-04-05]. https://eucia.eu/userfiles/files/20130207_eucia_brochure_recycling.pdf.


 GONG Ying-xue,TAI Yan,XIAO Wen-juan,et al.Construction of Saccharomyces cerevisiae integrated expression vector and its application in cellulose bioconvesion[J].Journal of Shenzhen University Science and Engineering,2010,27(1):82.
 MA Yi,DUAN Huabo,LI Qiangfeng,et al.Benefits of GHGs emission reduction of wind farm based on life cycle assessment[J].Journal of Shenzhen University Science and Engineering,2020,37(1):653.[doi:10.3724/SP.J.1249.2020.06653]


Received: 2021- 09-16; Accepted: 2022-03-14; Online (CNKI): 2022-06-13
Foundation: National Key R&D Program of China ( 2018YFB1502804)
Corresponding author: Associate professor DUAN Huabo. E-mail: huabo@ szu.edu.cn
Citation: CAI Xiaoping, DUAN Huabo, MA Yi, et al. Environmental impact assessment of wind turbine blades analysis based on life cycle [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(1): 40-47.(in Chinese)
作者简介:蔡晓萍(1998—),深圳大学硕士研究生.研究方向:城市环境管理与可持续建设.E-mail: 569027314@qq.com
更新日期/Last Update: 2023-01-30