[1]焦亚萌,李文萍,武岳,等.改进蚁群优化算法的最大似然DOA估计方法[J].深圳大学学报理工版,2023,40(1):33-39.[doi:10.3724/SP.J.1249.2023.01033]
 JIAO Yameng,LI Wenping,WU Yue,et al.Maximum likelihood DOA estimation based on improved ant colony optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2023,40(1):33-39.[doi:10.3724/SP.J.1249.2023.01033]
点击复制

改进蚁群优化算法的最大似然DOA估计方法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第1期
页码:
33-39
栏目:
电子与信息科学
出版日期:
2023-01-06

文章信息/Info

Title:
Maximum likelihood DOA estimation based on improved ant colony optimization algorithm
文章编号:
202301004
作者:
焦亚萌李文萍武岳崔琳
西安工程大学电子信息学院,陕西西安 710600
Author(s):
JIAO Yameng LI Wenping WU Yue and CUI Lin
College of Electronic Information, Xi’an Polytechnic University, Xi’an 710600, Shannxi Province, P. R. China
关键词:
信号检测参数估计波达方向最大似然估计蚁群优化算法精英反向学习跨邻域搜索机制计算复杂度
Keywords:
signal detection parameter estimation direction of arrival maximum likelihood estimation ant colony optimization algorithm elite reverse learning across neighborhood search computing complexity
分类号:
TN911.7
DOI:
10.3724/SP.J.1249.2023.01033
文献标志码:
A
摘要:
针对将连续域蚁群优化算法应用于最大似然(maximum likelihood, ML)估计中存在计算量过大的问题,提出一种基于改进蚁群优化(modified ant colony optimization, MACO)算法的最大似然波达方向(maximum likelihood direction of arrival, ML-DOA)估计方法.采用精英反向学习策略获得较优初始解群体,结合全局跨邻域搜索和高斯核函数局部搜索对蚁群的寻优方式进行优化,扩大了算法的搜索空间并加快了收敛速度,最终得到ML估计方法的非线性全局最优解.仿真结果表明,与基于粒子群优化(particle swarm optimization, PSO)算法、蚁群优化(ant colony optimization, ACO)算法的ML估计方法相比,ML-MACO算法的收敛速度是ML-ACO算法的4倍,计算量是ML-ACO算法的1/3,分辨成功率高于ML-PSO算法和ML-ACO算法,估计误差小于ML-PSO算法和ML-ACO算法.ML-MACO算法以更低的计算量保持了ML算法的优良估计性能,收敛性能更优且估计精度更高.
Abstract:
In order to alleviate the huge amount of calculation when using the continuous domain ant colony optimization (ACO) algorithm to handle the maximum likelihood (ML) estimation problem, we propose a maximum likelihood direction of arrival (ML-DOA) estimation method based on modified ant colony optimization (MACO) algorithm. Firstly, MACO algorithm adopts the elite reverse learning strategy to obtain a better initial solution group. Secondly, the optimization method of ant colony is conducted by combining global cross-neighborhood search and local search of Gaussian kernel function to expand the algorithm search space and accelerate the convergence speed. Finally, the nonlinear global optimal solution of ML estimation method is obtained. Simulation results show that, compared with ML estimation methods based on particle swarm optimization (PSO) algorithm and ACO algorithm, the convergence speed of the ML-MACO algorithm is 4 times faster than that of the ML-ACO algorithm, the computational load is 1/3 that of the ML-ACO algorithm, the resolution success rate is higher than the ML-PSO algorithm and the ML-ACO algorithm, and the estimation error is less than the ML-PSO algorithm and the ML-ACO algorithm. The ML-MACO algorithm maintains the excellent estimation performance of the ML algorithm with lower computational effort, better convergence performance, and higher estimation accuracy.

参考文献/References:

[1] SIRIANUNPIBOON S, HOWARD S D, ELTON S D. Time-decentralized DOA estimation for electronic surveillance [C]// The 51st Asilomar Conference on Signals, Systems, and Computers. Piscataway, USA: IEEE, 2017: 1137-1141.
[2] CHEN Shiyu, LI Yanjie, CHEN Haoyao. A monocular vision localization algorithm based on maximum likelihood estimation [C]// International Conference on Real-time Computing and Robotics (RCAR). Piscataway, USA: IEEE, 2017: 561-566.
[3] LI M, LU Y. Genetic algorithm based maximum likelihood DOA estimation [C]// International Radar Conference. Edinburgh, UK: IET, 2002, 5(3): 502-506.
[4] CHEN Haihua, LI Shibao, LIU Jianhang, et al. A novel modification of PSO algorithm for SML estimation of DOA [J]. Sensors, 2016, 16(12): 2188.
[5] SHARMA A, MATHUR S. Comparative analysis of ML-PSO DOA estimation with conventional techniques in varied multipath channel environment [J]. Wireless Personal Communications, 2018, 100(3): 803-817.
[6] 单泽彪,石要武,刘小松,等.应用人工蜂群算法的动态波达方向跟踪[J].光学精密工程,2015,23(3):838-845.
SHAN Zebiao, SHI Yaowu, LIU Xiaosong, et al. DOA tracking of moving targets by artificial bee colony algorithm [J]. Optics and Precision Engineering, 2015, 23(3): 838-845.(in Chinese)
[7] SHEIKH Y A, ULLAH R, YE Z. Range and direction of arrival estimation of near-field sources in sensor arrays using differential evolution algorithm [J]. International Journal of Computer Applications, 2016, 139(4): 16-20.
[8] POUR H M, ATLASBAF Z, MIRZAEE A, et al. A hybrid approach involving artificial neural network and ant colony optimization for direction of arrival estimation [C]// Canadian Conference on Electrical and Computer Engineering. Piscataway, USA: IEEE, 2008: 1059-1064.
[9] 王鹏,贺雪芳,张明星,等.基于人工鱼群算法的声矢量传感器阵列的最大似然DOA估计[J].太原理工大学学报,2020,51(6):845-851.
WANG Peng, HE Xuefang, ZHANG Mingxing, et al. Maximum likelihood DOA estimation of acoustic vector sensor array based on artificial fish swarm algorithm [J]. Journal of Taiyuan University of Technology, 2020, 51(6): 845-851.(in Chinese)
[10] FAN Xinnan, PANG Linbin, SHI Pengfei, et al. Application of bee evolutionary genetic algorithm to maximum likelihood direction-of-arrival estimation [J]. Mathematical Problems in Engineering, 2019, 2019: 6035870.
[11] 王辉辉,陈玉凤.一种基于连续蚁群算法的快速最大似然DOA估计[J].火控雷达技术,2014,43(2):1-4,67.
WANG Huihui, CHEN Yufeng. A fast maximum likelihood DOA estimation based on continuous ant colony algorithm [J]. Fire Control Radar Technology, 2014, 43(2): 1-4, 67.(in Chinese)
[12] WANG Peng, KONG Yujun, HE Xuefang, et al. An improved squirrel search algorithm for maximum likelihood DOA estimation and application for MEMS vector hydrophone array [J]. IEEE Access, 2019, 7: 118343-118358.
[13] SUDHOLT D. The benefits of population diversity in evolutionary algorithms: a survey of rigorous runtime analyses [M]// DOERR B, NEUMANN F. Theory of Evolutionary Computation: Recent Developments in Discrete Optimization. Cham: Springer International Publrshing, 2020: 359-404.
[14] ZHOU Yongquan, WANG Rui, LUO Qifang. Elite opposition-based flower pollination algorithm [J]. Neurocomputing, 2016, 188: 294-310.
[15] WU Guohua. Across neighborhood search for numerical optimization [J]. Information Sciences, 2016, 329: 597-618.

相似文献/References:

[1]陈娇娜,张生瑞,靳引利.高速公路行程时间可靠性的小波密度估计[J].深圳大学学报理工版,2016,33(4):432.[doi:10.3724/SP.J.1249.2016.04432]
 Chen Jiaona,Zhang Shengrui,and Jin Yinli.Highway travel time reliability modeling based on wavelet density estimation[J].Journal of Shenzhen University Science and Engineering,2016,33(1):432.[doi:10.3724/SP.J.1249.2016.04432]
[2]柳向东,靳晓洁.市道轮换下的高频数据参数估计[J].深圳大学学报理工版,2018,35(4):432.[doi:10.3724/SP.J.1249.2018.04432]
 LIU Xiangdong and JIN Xiaojie.Parameter estimation via regime switching model for high frequency data[J].Journal of Shenzhen University Science and Engineering,2018,35(1):432.[doi:10.3724/SP.J.1249.2018.04432]
[3]焦亚萌,武岳,崔琳.基于峰均功率比的盖氏圆信源数估计方法[J].深圳大学学报理工版,2021,38(1):85.[doi:10.3724/SP.J.1249.2021.01085]
 JIAO Yameng,WU Yue,and CUI Lin.Gerschgorin disk estimator method for source number estimation based on peak-to-average power ratio[J].Journal of Shenzhen University Science and Engineering,2021,38(1):85.[doi:10.3724/SP.J.1249.2021.01085]

备注/Memo

备注/Memo:
Received: 2022- 03-03; Accepted: 2022-06-05; Online (CNKI): 2022-10-20
Foundation: National Natural Science Foundation of China (61901347); Teaching Project of Association of Chinese Graduate Education(2020ZDB67); Scientific Research Projects of Xi’an Science Technology Bureau (22GXFW0034)
Corresponding author: Lecture JIAO Yameng. E-mail: jiaoyameng@xpu.edu.cn
Citation: JIAO Yameng, LI Wenping, WU Yue, et al. Maximum likelihood DOA estimation based on improved ant colony optimization algorithm [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(1): 33-39.(in Chinese)
基金项目:国家自然科学基金资助项目(61901347);中国学位与研究生教育学会重点课题资助项目(2020ZDB67);西安市科技局科研计划资助项目(22GXFW0034)
作者简介:焦亚萌(1981—),西安工程大学讲师、博士.研究方向:阵列信号处理、麦克风信号处理.E-mail: jiaoyameng@xpu.edu.cn
引文:焦亚萌,李文萍,武岳,等.改进蚁群优化算法的最大似然DOA估计方法[J].深圳大学学报理工版,2023,40(1):33-39.
更新日期/Last Update: 2023-01-30