[1]何春龙,王新龙,李兴泉,等.考虑硬件损耗的智能反射面辅助无线携能通信系统[J].深圳大学学报理工版,2023,40(1):22-32.[doi:10.3724/SP.J.1249.2023.01022]
 HE Chunlong,WANG Xinlong,LI Xingquan,et al.Communication system with intelligent reflecting surface aided simultaneous wireless information and power transfer considering hardware impairments[J].Journal of Shenzhen University Science and Engineering,2023,40(1):22-32.[doi:10.3724/SP.J.1249.2023.01022]
点击复制

考虑硬件损耗的智能反射面辅助无线携能通信系统()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第1期
页码:
22-32
栏目:
电子与信息科学
出版日期:
2023-01-06

文章信息/Info

Title:
Communication system with intelligent reflecting surface aided simultaneous wireless information and power transfer considering hardware impairments
文章编号:
202301003
作者:
何春龙12王新龙1李兴泉3钱恭斌1
1)深圳大学广东省智能信息处理重点实验室,广东深圳518060
2)东南大学国家移动通信研究实验室,江苏南京211189
3)深圳信息职业技术学院微电子学院,广东深圳518172
Author(s):
HE Chunlong12 WANG Xinlong1 LI Xingquan3 and QIAN Gongbin1
1) Guangdong Key Laboratory of Intelligent Information Technology, Shenzhen 518060, Guangdong Province, P.R.China
2) National Mobile Communication Research Laboratory, Southeast University, Nanjing 211189, Jiangsu Province, P.R.China
3) School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, Guangdong Province, P.R.China
关键词:
无线通信技术携能通信硬件损耗智能反射面多输入多输出块坐标下降算法
Keywords:
wireless communication technology simultaneous wireless information and power transfer hardware impairments intelligent reflecting surfacel multiple-input multiple-output block coordinate descent algorithm
分类号:
TN92
DOI:
10.3724/SP.J.1249.2023.01022
文献标志码:
A
摘要:
为验证收发器硬件损耗对通信系统性能的影响,在考虑收发器硬件损耗的情况下,对智能反射面(intelligent reflecting surface, IRS)辅助的携能通信(simultaneous wireless information and power transfer, SWIPT)系统的鲁棒性传输设计进行研究.在考虑基站的最大发射功率、能量收集器的最小接收能量和IRS无源波束成形的约束下,将优化目标设为最大化所有信息接收者的加权和速率,并使用块坐标下降(block coordinate descent, BCD)算法将优化问题分解成多个优化子问题,交替优化.对于基站有源波束成形和IRS无源波束成形的优化问题,分别采用拉格朗日对偶方法和最优化最大化(majorization minimization, MM)算法来解决.仿真结果验证了收发器硬件损耗对系统性能的影响,也证实了信息接收端的硬件损耗要比基站发射端的硬件损耗对系统造成的性能下降更明显.
Abstract:
In order to verify the impact of transceiver hardware impairments on the performance of communication system, we explore the robust transmission design of an intelligent reflecting surface (IRS) aided simultaneous wireless information and power transfer (SWIPT) communication system in consideration of hardware impairments of transceiver. Under the constraints of maximum transmitting power of base station, the minimum receiving energy of the energy collector and IRS passive beamforming, the optimization objective is set to maximize the weighted sum rate of all information receivers. And the block coordinate descent (BCD) algorithm is used to decompose the optimization problem into multiple optimization subproblems for alternate optimization. The Lagrange dual method and maximization minimization (MM) algorithm are respectively adopted to solve the optimization problems of active beamforming and IRS passive beamforming. Simulation results validate the impact of transceiver hardware impairments on system performance, and also confirm that the hardware impairment at information receiver is more obvious than the hardware impairment at base station transmitter.

参考文献/References:

[1] WU Qingqing, ZHANG Rui. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network [J]. IEEE Communications Magazine, 2020, 58(1): 106-112.
[2] WU Qingqing, ZHANG Rui. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints [J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1735-1748.
[3] ZHANG Rui, HO C K. MIMO broadcasting for simultaneous wireless information and power transfer [J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 1989-2001.
[4] ZENG Yong, CLERCKX B, ZHANG Rui. Communications and signals design for wireless power transmission [J]. IEEE Transactions on Communications, 2017, 65(5): 2264-2290.
[5] GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks [C]// IEEE Global Communications Conference (GLOBECOM). Piscataway, USA: IEEE, 2019: 1-6.
[6] LI Zhendong, CHEN Wen, WU Qingqing, et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks [J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2019-2033.
[7] LI Xingquan,ZHANG Chiya Zhang, HE Chunlong, et al. Sum-rate maximization in IRS-assisted wireless power communication networks [J]. IEEE Internet of Things Journal, 2021, 8(19): 14959-14970.
[8] WU Qingqing, ZHANG Rui. Weighted sum power maximization for intelligent reflecting surface aided SWIPT [J]. IEEE Wireless Communications Letters, 2020, 9(5): 586-590.
[9] ZHOU Gui, PAN Cunhua, REN Hong, et al. User cooperation for RIS-aided secure SWIPT MIMO systems under the passive eavesdropping [C]// IEEE/CIC International Conference on Communications in China (ICCC Workshops). Piscataway, USA: IEEE, 2021: 171-176.
[10] JIN Yong, GUO Ruijie, ZHOU Lin, et al. Secure beamforming for IRS-assisted nonlinear SWIPT systems with full-duplex user [J]. IEEE Communications Letters, 2022, 26(7): 1494-1498.
[11] GONG Shiqi, YANG Ziyi, XING Chengwen, et al. Beamforming optimization for intelligent reflecting surface-aided SWIPT IoT networks relying on discrete phase shifts [J]. IEEE Internet of Things Journal, 2021, 8(10): 8585-8602.
[12] ZHOU Gui, PAN Cunhua, REN Hong, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels [J]. IEEE Transactions on Signal Processing, 2020, 68: 5092-5106.
[13] ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Robust beamforming design for IRS-aided secure SWIPT terahertz systems with non-linear EH model [J]. IEEE Wireless Communications Letters, 2022, 11(4): 746-750.
[14] ZHENG Beixiong, YOU Changsheng, ZHANG Rui. Efficient channel estimation for double-IRS aided multi-user MIMO system [J]. IEEE Transactions on Communications, 2021, 69(6): 3818-3832.
[15] BUDHIRAJA I, KUMAR N, TYAGI S, et al. SWIPT-enabled D2D communication underlaying NOMA-based cellular networks in imperfect CSI [J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 692-699.
[16] TAHA A, ZHANG Yu, MISMAR F B, et al. Deep reinforcement learning for intelligent reflecting surfaces: towards standalone operation [C]// IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway, USA: IEEE, 2020: 1-5.
[17] ELSAYED M, BADAWY A, SHAFIE A E, et al. A deep reinforcement learning framework for data compression in uplink NOMA-SWIPT systems [J]. IEEE Internet of Things Journal, 2022, 9(14): 11656-11674.
[18] SUZUKI H, TRAN T V A, COLLINGS I B, et al. Transmitter noise effect on the performance of a MIMO-OFDM hardware implementation achieving improved coverage [J]. IEEE Journal on Selected Areas in Communications, 2008, 26(6): 867-876.
[19] NAMGOONG W. Modeling and analysis of nonlinearities and mismatches in AC-coupled direct-conversion receiver [J]. IEEE Transactions on Wireless Communications, 2005, 4(1): 163-173.
[20] BJ?RNSON E, HOYDIS J, KOUNTOURIS M, et al. Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits [J]. IEEE Transactions on Information Theory, 2014, 60(11): 7112-7139.
[21] BOULOGEORGOS A A, ALEXIOU A. How much do hardware imperfections affect the performance of reconfigurable intelligent surface-assisted systems? [J]. IEEE Open Journal of the Communications Society, 2020, 1: 1185-1195.
[22] SHEN Hong, XU Wei, GONG Shulei, et al. Beamforming optimization for IRS-aided communications with transceiver hardware impairments [J]. IEEE Transactions on Communications, 2021, 69(2): 1214-1227.
[23] ZHOU Gui, PAN Cunhua, REN Hong, et al. Secure wireless communication in RIS-aided MISO system with hardware impairments [J]. IEEE Wireless Communications Letters, 2021, 10(6): 1309-1313.
[24] SAEIDI M A, EMADI M J, MASOUMI H, et al. Weighted sum-rate maximization for multi-IRS-assisted full-duplex systems with hardware impairments [J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 466-481.
[25] WANG Feng, XU Jie, WANG Xin, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems [J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1784-1797.
[26] SHI Qingjiang, RAZAVIYAYN M, LUO Zhiquan, et al. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel [J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4331-4340.
[27] ZHANG Xianda. Matrix analysis and applications [M]. Cambridge: Cambridge University Press, 2017.
[28] SUN Wei, SONG Qingyang, GUO Lei, et al. Secrecy rate maximization for intelligent reflecting surface aided SWIPT systems [C]// IEEE/CIC International Conference on Communications in China (ICCC). Piscataway, USA: IEEE, 2020: 1276-1281.
[29] PAN Cunhua, REN Hong, WANG Kezhi, et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer [J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1719-1734.
[30] SUN Ying, BABU P, PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning [J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794-816.
[31] SONG Junxiao, BABU P, PALOMAR D P. Sequence design to minimize the weighted integrated and peak sidelobe levels [J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2051-2064.

相似文献/References:

[1]杨舰,谢广智.电梯召唤通信系统的无线化处理与设计[J].深圳大学学报理工版,2016,33(5):517.[doi:10.3724/SP.J.1249.2016.05517]
 Jian and Xie Guangzhi.Wireless processing and design of hall-call communication system of elevatorYang[J].Journal of Shenzhen University Science and Engineering,2016,33(1):517.[doi:10.3724/SP.J.1249.2016.05517]
[2]何春龙,周月华,钱恭斌,等.基于机器学习的集群双向DAS能效技术[J].深圳大学学报理工版,2020,37(6):567.[doi:10.3724/SP.J.1249.2020.06567]
 HE Chunlong,ZHOU Yuehua,QIAN Gongbin,et al.Machine learning generated clusters-based energy efficient power allocation for bidirectional DAS[J].Journal of Shenzhen University Science and Engineering,2020,37(1):567.[doi:10.3724/SP.J.1249.2020.06567]

备注/Memo

备注/Memo:
Received: 2022- 06-21; Revised: 2022-10-14; Accepted: 2022-11-15; Online (CNKI): 2022-12-19
Foundation: National Natural Science Foundation of China (62101161); Guangdong Basic Research Foundation (2019A1515110358, 2021A1515012097)
Corresponding author: Associate professor QIAN Gongbin. E-mail: qiangb663@163.com
Citation: HE Chunlong, WANG Xinlong, LI Xingquan, et al. Communication system with intelligent reflecting surface aided simultaneous wireless information and power transfer considering hardware impairments [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(1): 22-32.(in Chinese)
基金项目:国家自然科学基金资助项目(62101161);广东省基础研究计划资助项目(2019A1515110358, 2021A1515012097);深圳市基础研究计划资助项目(20200811192821001,JCYJ20190808122409660)
作者简介:何春龙(1984—),深圳大学副教授、博士.研究方向:分布式天线能效、机器学习及信道估计等.E-mail: helong@szu.edu.cn
王新龙(1999—),深圳大学硕士研究生.研究方向:无线通信、IRS.E-mail: 2070436151@email.szu.edu.cn
何春龙和王新龙为共同第一作者.
引文:何春龙,王新龙,李兴泉,等.考虑硬件损耗的智能反射面辅助无线携能通信系统[J].深圳大学学报理工版,2023,40(1):22-32.
更新日期/Last Update: 2023-01-30