参考文献/References:
[1] 健男,尹美杰,张熙,等.高分辨透射电子显微镜的原位实验综述[J].深圳大学学报理工版,2021,38(5):441-452.
JIAN Nan, YIN Meijie, ZHANG Xi, et al. In situ experiments of high resolution transmission electron microscopy: a review [J]. Journal of Shenzhen University Science and Engineering, 2021, 38(5): 441-452.(in Chinese)
[2] JIANG Yi, CHEN Zhen, HAN Yimo, et al. Electron ptychography of 2D materials to deep sub-?ngstr?m resolution [J]. Nature, 2018, 559(7714): 343-349.
[3] DE BROGLIE L. Waves and quanta [J]. Nature, 1923, 112(2815): 540.
[4] BUSCH H. Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde [J]. Annalen der Physik, 1926, 386(25): 974-993.(in German)
[5] RUSKA E, KNOLL M. Die magnetische sammelspule für schnelle elektronenstrahlen [J]. Zeitschrift Für Technische Physik, 1931, 12: 389-400.(in German)
[6] KNOLL M, RUSKA E. Das elektronenmikroskop [J]. Zeitschrift Für Physik, 1932, 78: 318-339.(in German)
[7] VON ARDENNE M. ELEKTRONEN-RASTERMIKROS-
KOP D. Theoretische grundlagen [J]. Zeitschrift für Physik volume, 1938, 109: 553-572.(in German)
[8] IIJIMA S, COWLEY J M, DONNAY G. High resolution electron microscopy of tourmaline crystals [J].Tschermaks mineralogische und petrographische Mitteilungen, 1973,20: 216-224.
[9] CREWE A V, WALL J, WELTER L M. A high-resolution scanning transmission electron microscope [J]. Journal of Applied Physics, 1968, 39(13): 5861-5868.
[10] CREWE A V, EGGENBERGER D N, WALL J, et al. Electron gun using a field emission source [J]. Review of Scientific Instruments, 1968, 39(4): 576-583.
[11] HAWKES P W. Signposts in electron optics [J]. Advances in Imaging and Electron Physics, 2002, 123: 1-28.
[12] ROSE H. Chapter 1: history of direct aberration correction [M]// HAWKES P W. Advances in Imaging and Electron Physics. [S. l.]: Elsevier, 2008: 3-39.
[13] CHEN Zhen, JIANG Yi, SHAO Y T, et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations [J]. Science, 2021, 372(6544): 826-831.
[14] SMITH D J. Development of aberration-corrected electron microscopy [J]. Microscopy and Microanalysis, 2008, 14(1): 2-15.
[15] URBAN K, HOUBEN L, JIA Chunlin, et al. Chapter 11: atomic-resolution aberration-corrected transmission electron microscopy [M]// HAWKES P W. Advances in Imaging and Electron Physics. [S. l.]: Elsevier, 2008: 439-480.
[16] HAWKES P W. The correction of electron lens aberrations [J]. Ultramicroscopy, 2015, 156: A1-A64.
[17] WILLIAMS D B, CARTER C B. Transmission electron microscopy: a textbook for materials science [M]. 2nd ed. New York, USA: Springer, 2009: 91-114.
[18] HAIDER M, UHLEMANN S, ZACH J. Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM [J]. Ultramicroscopy, 2000, 81(3/4): 163-175.
[19] HAIGH S J, KIRKLAND A I. Aberration-corrected imaging in CTEM [M]// Aberration‐Corrected Analytical Transmission Electron Microscopy. [S.l.]: Wiley, 2011: 241-261.
[20] SCHERZER O. Spharische und chromatische Korrektur von Elektronen-Linsen [J]. Optik, 1947, 2: 114-132.(in German)
[21] VAN AERT S, CHEN J H, VAN DYCK D. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy [J]. Ultramicroscopy, 2010, 110(11): 1404-1410.
[22] CHANG Yunjie, LI Shouqing, WANG Yumei, et al. Applicability of non-linear imaging in high-resolution transmission electron microscopy [J]. Microscopy, 2017, 66(6): 406-413.
[23] CHEN Mukun, GE Binghui. Further discussion on the separation of linear and nonlinear components in HRTEM imaging [J]. Micron, 2021, 145: 103054.
[24] PENG Yiping, OXLEY M P, LUPINI A R, et al. Spatial resolution and information transfer in scanning transmission electron microscopy [J]. Microscopy and Microanalysis, 2008, 14(1): 36-47.
[25] SPARROW C M. On spectroscopic resolving power [J]. The Astrophysical Journal, 1916, 44: 76-86.
[26] BLACK G, LINFOOT E H. Spherical aberration and the information content of optical images [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1957, 239(1219): 522-540.
[27] TANAKA N. Electron nano-imaging : basics of imaging and diffraction for TEM and STEM [M]. Tokyo: Springer, 2017: 167-190.
[28] PENNYCOOK S J. Scanning transmission electron microscopy: Z-contrast imaging [M]// 2nd ed. Characterization of Materials. [S. l.]: Wiley, 2012.
[29] NELLIST P D. The principles of STEM imaging [M]// PENNYCOOK S J, NELLIST P D. Scanning Transmission Electron Microscopy: Imaging and Analysis. New York, USA: Springer, 2011: 91-115.
[30] MORISHITA S, MUKAI M, SUENAGA K, et al. Resolution enhancement in transmission electron microscopy with 60 kV monochromated electron source [J]. Applied Physics Letters, 2016, 108(1): 013107.
[31] O’KEEFE M A. Seeing atoms with aberration-corrected sub-?ngstr?m electron microscopy [J]. Ultramicroscopy, 2008, 108(3): 196-209.
[32] YAMASAKI J, SHIMAOKA Y, SASAKI H. Precise method for measuring spatial coherence in TEM beams using Airy diffraction patterns [J]. Microscopy, 2018, 67(1): 1-10.
[33] NGUYEN D T, FINDLAY S D, ETHERIDGE J. The spatial coherence function in scanning transmission electron microscopy and spectroscopy [J]. Ultramicroscopy, 2014, 146: 6-16.
[34] KIMOTO K. Practical aspects of monochromators developed for transmission electron microscopy [J]. Microscopy, 2014, 63(5): 337-344.
[35] REZ P, AOKI T, MARCH K, et al. Damage-free vibrational spectroscopy of biological materials in the electron microscope [J]. Nature Communications, 2016, 7(1): 10945.
[36] BATSON P E, DELLBY N, KRIVANEK O L. Sub-?ngstrom resolution using aberration corrected electron optics [J]. Nature, 2002, 419(6902): 94.
[37] YU Lei, WAN Weishi, YU Kaman, et al. High order phase contrast and source divergence in low energy electron microscopy [J]. Ultramicroscopy, 2021, 225: 113284.
[38] ROSE H, NEJATI A, M?LLER H. Magnetic Cc/Cs-corrector compensating for the chromatic aberration and the spherical aberration of electron lenses [J]. Ultramicroscopy, 2019, 203: 139-144.
[39] LINCK M, HARTEL P, UHLEMANN S, et al. Chromatic aberration correction for atomic resolution TEM imaging from 20 to 80 kV [J]. Physical Review Letters, 2016, 117(7): 076101.
[40] HAWKES P W, KRIVANEK O L. Aberration correctors, monochromators, spectrometers [M]// HAWKES P W, SPENCE J C H. Springer Handbook of Microscopy. Cham: Springer International Publishing, 2019: 625-675.
[41] KABIUS B, HARTEL P, HAIDER M, et al. First application of Cc-corrected imaging for high-resolution and energy-filtered TEM [J]. Journal of Electron Microscopy, 2009, 58(3): 147-155.
[42] KRIVANEK O L. Aberration correction in electron microscopy and spectroscopy [J]. Microscopy and Microanalysis, 2021, 27(Suppl.1): 3474-3478.
[43] HAIDER M, LINCK M, HARTEL P, et al. Advancements of instrumentation for high-spatial and high-energy resolution transmission electron microscopy [C]// European Microscopy Congress. Oxford, UK: The Royal Microscopical Society, 2021: 55.
[44] MORISHITA S, SAWADA H. Theoretical study on sixth-order geometrical aberration correction [J]. Ultramicroscopy, 2022, 239: 113569.
[45] RIEDEL T, HARTEL P, LINCK M, et al. Advancing the hexapole Cs-corrector for the transmission electron microscope [J]. Microscopy and Microanalysis, 2020, 26(S2): 2150-2151.
[46] 李斗星.透射电子显微学的新进展Ⅰ透射电子显微镜及相关部件的发展及应用[J].电子显微学报,2004,23(3):269-277.
LI Douxing. Progress of transmission electron microscopy Ⅰ development of transmission electron microscope and related equipments [J]. Journal of Chinese Electron Microscopy Society, 2004, 23(3): 269-277.(in Chinese)
[47] MACLAREN I, MACGREGOR T A, ALLEN C S, et al. Detectors: the ongoing revolution in scanning transmission electron microscopy and why this important to material characterization [J]. APL Materials, 2020, 8(11): 110901.
[48] MARKS L. What are the resolution limits in electron microscopes? [J]. Physics, 2013, 6: 82.
[49] LIU Lingmei, WANG Ning, ZHU Chongzhi, et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5 [J]. Angewandte Chemie International Edition, 2020, 59(2): 819-825.
[50] LEVIN B D A. Direct detectors and their applications in electron microscopy for materials science [J]. Journal of Physics: Materials, 2021, 4(4): 042005.
[51] LU Xia, ZHAO Liang, HE Xiaoqing, et al. Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy [J]. Advanced Materials, 2012, 24(24): 3233-3238.
[52] FINDLAY S D, SHIBATA N, SAWADA H, et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy [J]. Applied Physics Letters, 2009, 95(19): 191913.
[53] SHIBATA N. Atomic-resolution differential phase contrast electron microscopy [J]. Journal of the Ceramic Society of Japan, 2019, 127(10): 708-714.
[54] SHIBATA N, FINDLAY S D, KOHNO Y, et al. Differential phase-contrast microscopy at atomic resolution [J]. Nature Physics, 2012, 8(8): 611-615.
[55] CHEN Zhen, ODSTRCIL M, JIANG Yi, et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose [J]. Nature Communications, 2020, 11(1): 2994.
[56] HAIDER M, M?LLER H, UHLEMANN S, et al. Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM [J]. Ultramicroscopy, 2008, 108(3): 167-178.
[57] TIEMEIJER P C, BISCHOFF M, FREITAG B, et al. Using a monochromator to improve the resolution in TEM to below 0.5 ?. Part I: creating highly coherent monochromated illumination [J]. Ultramicroscopy, 2012, 114: 72-81.
[58] HAIDER M, UHLEMANN S, HARTEL P, et al. Towards high resolution in TEM and STEM: what are the limitations and achievements [J]. Microscopy and Microanalysis, 2014, 20(Suppl. 3): 378-379.
[59] LI Shouqing, CHANG Yunjie, WANG Yumei, et al. A review of sample thickness effects on high-resolution transmission electron microscopy imaging [J]. Micron, 2020, 130: 102813.
[60] DICKERSON J L, LU Penghan, HRISTOV D, et al. Imaging biological macromolecules in thick specimens: the role of inelastic scattering in CryoEM [J]. Ultramicroscopy, 2022, 237: 113510.
[61] VELAZCO A, B?CH? A, JANNIS D, et al. Reducing electron beam damage through alternative STEM scanning strategies, Part I: experimental findings [J]. Ultramicroscopy, 2022, 232: 113398.
[62] FU Xuewen, BARANTANI F, GARGIULO S, et al. Nanoscale-femtosecond dielectric response of Mott insulators captured by two-color near-field ultrafast electron microscopy [J]. Nature Communications, 2020, 11(1): 5770.
[63] YIP K M, FISCHER N, PAKNIA E, et al. Breaking the next Cryo-EM resolution barrier: atomic resolution determination of proteins! [J/OL]. (2022-05-22). https://doi.org/10.1101/2020.05.21.106740.
[64] MITCHELL D R G. Contamination mitigation strategies for scanning transmission electron microscopy [J]. Micron, 2015, 73: 36-46.
[65] MCGILVERY C M, GOODE A E, SHAFFER M S P, et al. Contamination of holey/lacey carbon films in STEM [J]. Micron, 2012, 43(2/3): 450-455.
[66] LI Chen, TARDAJOS A P, WANG Da, et al. A simple method to clean ligand contamination on TEM grids [J]. Ultramicroscopy, 2021, 221: 113195.
[67] VAN DYCK D, LOBATO I, CHEN Furong, et al. Do you believe that atoms stay in place when you observe them in HREM? [J]. Micron, 2015, 68: 158-163.