[1]尹美杰,健男,张熙,等.透射电子显微镜空间分辨率综述[J].深圳大学学报理工版,2023,40(1):1-13.[doi:10.3724/SP.J.1249.2023.01001]
 YIN Meijie,JIAN Nan,ZHANG Xi,et al.Review on the spatial resolution of transmission electron microscope[J].Journal of Shenzhen University Science and Engineering,2023,40(1):1-13.[doi:10.3724/SP.J.1249.2023.01001]
点击复制

透射电子显微镜空间分辨率综述()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第1期
页码:
1-13
栏目:
电子与信息科学
出版日期:
2023-01-06

文章信息/Info

Title:
Review on the spatial resolution of transmission electron microscope
文章编号:
202301001
作者:
尹美杰健男张熙刁东风
深圳大学电镜中心,广东深圳518060
Author(s):
YIN Meijie JIAN Nan ZHANG Xi and DIAO Dongfeng
Electron Microscope Center, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
纳米科学与技术透射电子显微学空间分辨率单色器像差校正图像探测器厚样品电子束敏感积碳原子振动
Keywords:
nano-scale science and technology transmission electron microscopy spatial resolution monochromator aberration correction image detector thick samples electron beam sensitivity carbon contamination atomic vibration
分类号:
O4-1
DOI:
10.3724/SP.J.1249.2023.01001
文献标志码:
A
摘要:
透射电子显微镜(transmission electron microscope, TEM)具有超高的空间分辨率,是化学、材料科学、物理学、生物科学等领域最重要的研究手段之一.影响TEM空间分辨率的因素众多,不仅包括电镜自身结构和成像原理等,还有样品性质等原因.为系统且全面地了解TEM分辨率的涵义、原理与应用,本文通过回顾TEM空间分辨率的发展历史,从理论上厘清了TEM空间分辨率的概念、物理涵义、影响因素和适用范围;从电镜装置角度,分别概述了电子枪、磁透镜、图像探测器和电镜内外部环境对空间分辨率的影响规律,以及单色器、像差校正器和新型图像探测器的发展现状;从实际应用角度,重点介绍了样品过厚、电子束损伤、积碳和原子振动等降低空间分辨率的作用机理及解决途径.本文可为非电子显微学研究者们正确使用TEM提供参考.
Abstract:
Transmission electron microscope (TEM) is one of the most important research tools in a wide range of research fields such as chemistry, materials science, physics, and biological science. There are many factors affect the spatial resolution of TEM, including not only the construction of electron microscope and imaging mechanism, but also the nature of the sample and other reasons. In order to systematically and comprehensively understand the meaning, principle and application of TEM spatial resolution, this paper firstly briefly describes the history of TEM spatial resolution advancement, and then theoretically clarifies the concept, physical meaning, influencing factors and application scope of TEM spatial resolution, then outlines the influence of TEM electron gun, magnetic lens, image detector and internal and external environment on the resolution, the development of monochromator, aberration corrector and new image detector from the perspective of electron microscope device. Finally, from the perspective of practical applications, the mechanism of resolution degradation due to thickness, electron beam sensitivity, carbon accumulation and atomic vibrations and the corresponding solutions are highlighted.

参考文献/References:

[1] 健男,尹美杰,张熙,等.高分辨透射电子显微镜的原位实验综述[J].深圳大学学报理工版,2021,38(5):441-452.
JIAN Nan, YIN Meijie, ZHANG Xi, et al. In situ experiments of high resolution transmission electron microscopy: a review [J]. Journal of Shenzhen University Science and Engineering, 2021, 38(5): 441-452.(in Chinese)
[2] JIANG Yi, CHEN Zhen, HAN Yimo, et al. Electron ptychography of 2D materials to deep sub-?ngstr?m resolution [J]. Nature, 2018, 559(7714): 343-349.
[3] DE BROGLIE L. Waves and quanta [J]. Nature, 1923, 112(2815): 540.
[4] BUSCH H. Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde [J]. Annalen der Physik, 1926, 386(25): 974-993.(in German)
[5] RUSKA E, KNOLL M. Die magnetische sammelspule für schnelle elektronenstrahlen [J]. Zeitschrift Für Technische Physik, 1931, 12: 389-400.(in German)
[6] KNOLL M, RUSKA E. Das elektronenmikroskop [J]. Zeitschrift Für Physik, 1932, 78: 318-339.(in German)
[7] VON ARDENNE M. ELEKTRONEN-RASTERMIKROS-
KOP D. Theoretische grundlagen [J]. Zeitschrift für Physik volume, 1938, 109: 553-572.(in German)
[8] IIJIMA S, COWLEY J M, DONNAY G. High resolution electron microscopy of tourmaline crystals [J].Tschermaks mineralogische und petrographische Mitteilungen, 1973,20: 216-224.
[9] CREWE A V, WALL J, WELTER L M. A high-resolution scanning transmission electron microscope [J]. Journal of Applied Physics, 1968, 39(13): 5861-5868.
[10] CREWE A V, EGGENBERGER D N, WALL J, et al. Electron gun using a field emission source [J]. Review of Scientific Instruments, 1968, 39(4): 576-583.
[11] HAWKES P W. Signposts in electron optics [J]. Advances in Imaging and Electron Physics, 2002, 123: 1-28.
[12] ROSE H. Chapter 1: history of direct aberration correction [M]// HAWKES P W. Advances in Imaging and Electron Physics. [S. l.]: Elsevier, 2008: 3-39.
[13] CHEN Zhen, JIANG Yi, SHAO Y T, et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations [J]. Science, 2021, 372(6544): 826-831.
[14] SMITH D J. Development of aberration-corrected electron microscopy [J]. Microscopy and Microanalysis, 2008, 14(1): 2-15.
[15] URBAN K, HOUBEN L, JIA Chunlin, et al. Chapter 11: atomic-resolution aberration-corrected transmission electron microscopy [M]// HAWKES P W. Advances in Imaging and Electron Physics. [S. l.]: Elsevier, 2008: 439-480.
[16] HAWKES P W. The correction of electron lens aberrations [J]. Ultramicroscopy, 2015, 156: A1-A64.
[17] WILLIAMS D B, CARTER C B. Transmission electron microscopy: a textbook for materials science [M]. 2nd ed. New York, USA: Springer, 2009: 91-114.
[18] HAIDER M, UHLEMANN S, ZACH J. Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM [J]. Ultramicroscopy, 2000, 81(3/4): 163-175.
[19] HAIGH S J, KIRKLAND A I. Aberration-corrected imaging in CTEM [M]// Aberration‐Corrected Analytical Transmission Electron Microscopy. [S.l.]: Wiley, 2011: 241-261.
[20] SCHERZER O. Spharische und chromatische Korrektur von Elektronen-Linsen [J]. Optik, 1947, 2: 114-132.(in German)
[21] VAN AERT S, CHEN J H, VAN DYCK D. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy [J]. Ultramicroscopy, 2010, 110(11): 1404-1410.
[22] CHANG Yunjie, LI Shouqing, WANG Yumei, et al. Applicability of non-linear imaging in high-resolution transmission electron microscopy [J]. Microscopy, 2017, 66(6): 406-413.
[23] CHEN Mukun, GE Binghui. Further discussion on the separation of linear and nonlinear components in HRTEM imaging [J]. Micron, 2021, 145: 103054.
[24] PENG Yiping, OXLEY M P, LUPINI A R, et al. Spatial resolution and information transfer in scanning transmission electron microscopy [J]. Microscopy and Microanalysis, 2008, 14(1): 36-47.
[25] SPARROW C M. On spectroscopic resolving power [J]. The Astrophysical Journal, 1916, 44: 76-86.
[26] BLACK G, LINFOOT E H. Spherical aberration and the information content of optical images [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1957, 239(1219): 522-540.
[27] TANAKA N. Electron nano-imaging : basics of imaging and diffraction for TEM and STEM [M]. Tokyo: Springer, 2017: 167-190.
[28] PENNYCOOK S J. Scanning transmission electron microscopy: Z-contrast imaging [M]// 2nd ed. Characterization of Materials. [S. l.]: Wiley, 2012.
[29] NELLIST P D. The principles of STEM imaging [M]// PENNYCOOK S J, NELLIST P D. Scanning Transmission Electron Microscopy: Imaging and Analysis. New York, USA: Springer, 2011: 91-115.
[30] MORISHITA S, MUKAI M, SUENAGA K, et al. Resolution enhancement in transmission electron microscopy with 60 kV monochromated electron source [J]. Applied Physics Letters, 2016, 108(1): 013107.
[31] O’KEEFE M A. Seeing atoms with aberration-corrected sub-?ngstr?m electron microscopy [J]. Ultramicroscopy, 2008, 108(3): 196-209.
[32] YAMASAKI J, SHIMAOKA Y, SASAKI H. Precise method for measuring spatial coherence in TEM beams using Airy diffraction patterns [J]. Microscopy, 2018, 67(1): 1-10.
[33] NGUYEN D T, FINDLAY S D, ETHERIDGE J. The spatial coherence function in scanning transmission electron microscopy and spectroscopy [J]. Ultramicroscopy, 2014, 146: 6-16.
[34] KIMOTO K. Practical aspects of monochromators developed for transmission electron microscopy [J]. Microscopy, 2014, 63(5): 337-344.
[35] REZ P, AOKI T, MARCH K, et al. Damage-free vibrational spectroscopy of biological materials in the electron microscope [J]. Nature Communications, 2016, 7(1): 10945.
[36] BATSON P E, DELLBY N, KRIVANEK O L. Sub-?ngstrom resolution using aberration corrected electron optics [J]. Nature, 2002, 419(6902): 94.
[37] YU Lei, WAN Weishi, YU Kaman, et al. High order phase contrast and source divergence in low energy electron microscopy [J]. Ultramicroscopy, 2021, 225: 113284.
[38] ROSE H, NEJATI A, M?LLER H. Magnetic Cc/Cs-corrector compensating for the chromatic aberration and the spherical aberration of electron lenses [J]. Ultramicroscopy, 2019, 203: 139-144.
[39] LINCK M, HARTEL P, UHLEMANN S, et al. Chromatic aberration correction for atomic resolution TEM imaging from 20 to 80 kV [J]. Physical Review Letters, 2016, 117(7): 076101.
[40] HAWKES P W, KRIVANEK O L. Aberration correctors, monochromators, spectrometers [M]// HAWKES P W, SPENCE J C H. Springer Handbook of Microscopy. Cham: Springer International Publishing, 2019: 625-675.
[41] KABIUS B, HARTEL P, HAIDER M, et al. First application of Cc-corrected imaging for high-resolution and energy-filtered TEM [J]. Journal of Electron Microscopy, 2009, 58(3): 147-155.
[42] KRIVANEK O L. Aberration correction in electron microscopy and spectroscopy [J]. Microscopy and Microanalysis, 2021, 27(Suppl.1): 3474-3478.
[43] HAIDER M, LINCK M, HARTEL P, et al. Advancements of instrumentation for high-spatial and high-energy resolution transmission electron microscopy [C]// European Microscopy Congress. Oxford, UK: The Royal Microscopical Society, 2021: 55.
[44] MORISHITA S, SAWADA H. Theoretical study on sixth-order geometrical aberration correction [J]. Ultramicroscopy, 2022, 239: 113569.
[45] RIEDEL T, HARTEL P, LINCK M, et al. Advancing the hexapole Cs-corrector for the transmission electron microscope [J]. Microscopy and Microanalysis, 2020, 26(S2): 2150-2151.
[46] 李斗星.透射电子显微学的新进展Ⅰ透射电子显微镜及相关部件的发展及应用[J].电子显微学报,2004,23(3):269-277.
LI Douxing. Progress of transmission electron microscopy Ⅰ development of transmission electron microscope and related equipments [J]. Journal of Chinese Electron Microscopy Society, 2004, 23(3): 269-277.(in Chinese)
[47] MACLAREN I, MACGREGOR T A, ALLEN C S, et al. Detectors: the ongoing revolution in scanning transmission electron microscopy and why this important to material characterization [J]. APL Materials, 2020, 8(11): 110901.
[48] MARKS L. What are the resolution limits in electron microscopes? [J]. Physics, 2013, 6: 82.
[49] LIU Lingmei, WANG Ning, ZHU Chongzhi, et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5 [J]. Angewandte Chemie International Edition, 2020, 59(2): 819-825.
[50] LEVIN B D A. Direct detectors and their applications in electron microscopy for materials science [J]. Journal of Physics: Materials, 2021, 4(4): 042005.
[51] LU Xia, ZHAO Liang, HE Xiaoqing, et al. Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy [J]. Advanced Materials, 2012, 24(24): 3233-3238.
[52] FINDLAY S D, SHIBATA N, SAWADA H, et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy [J]. Applied Physics Letters, 2009, 95(19): 191913.
[53] SHIBATA N. Atomic-resolution differential phase contrast electron microscopy [J]. Journal of the Ceramic Society of Japan, 2019, 127(10): 708-714.
[54] SHIBATA N, FINDLAY S D, KOHNO Y, et al. Differential phase-contrast microscopy at atomic resolution [J]. Nature Physics, 2012, 8(8): 611-615.
[55] CHEN Zhen, ODSTRCIL M, JIANG Yi, et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose [J]. Nature Communications, 2020, 11(1): 2994.
[56] HAIDER M, M?LLER H, UHLEMANN S, et al. Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM [J]. Ultramicroscopy, 2008, 108(3): 167-178.
[57] TIEMEIJER P C, BISCHOFF M, FREITAG B, et al. Using a monochromator to improve the resolution in TEM to below 0.5 ?. Part I: creating highly coherent monochromated illumination [J]. Ultramicroscopy, 2012, 114: 72-81.
[58] HAIDER M, UHLEMANN S, HARTEL P, et al. Towards high resolution in TEM and STEM: what are the limitations and achievements [J]. Microscopy and Microanalysis, 2014, 20(Suppl. 3): 378-379.
[59] LI Shouqing, CHANG Yunjie, WANG Yumei, et al. A review of sample thickness effects on high-resolution transmission electron microscopy imaging [J]. Micron, 2020, 130: 102813.
[60] DICKERSON J L, LU Penghan, HRISTOV D, et al. Imaging biological macromolecules in thick specimens: the role of inelastic scattering in CryoEM [J]. Ultramicroscopy, 2022, 237: 113510.
[61] VELAZCO A, B?CH? A, JANNIS D, et al. Reducing electron beam damage through alternative STEM scanning strategies, Part I: experimental findings [J]. Ultramicroscopy, 2022, 232: 113398.
[62] FU Xuewen, BARANTANI F, GARGIULO S, et al. Nanoscale-femtosecond dielectric response of Mott insulators captured by two-color near-field ultrafast electron microscopy [J]. Nature Communications, 2020, 11(1): 5770.
[63] YIP K M, FISCHER N, PAKNIA E, et al. Breaking the next Cryo-EM resolution barrier: atomic resolution determination of proteins! [J/OL]. (2022-05-22). https://doi.org/10.1101/2020.05.21.106740.
[64] MITCHELL D R G. Contamination mitigation strategies for scanning transmission electron microscopy [J]. Micron, 2015, 73: 36-46.
[65] MCGILVERY C M, GOODE A E, SHAFFER M S P, et al. Contamination of holey/lacey carbon films in STEM [J]. Micron, 2012, 43(2/3): 450-455.
[66] LI Chen, TARDAJOS A P, WANG Da, et al. A simple method to clean ligand contamination on TEM grids [J]. Ultramicroscopy, 2021, 221: 113195.
[67] VAN DYCK D, LOBATO I, CHEN Furong, et al. Do you believe that atoms stay in place when you observe them in HREM? [J]. Micron, 2015, 68: 158-163.

相似文献/References:

[1]健男,尹美杰,张熙,等.高分辨透射电子显微镜的原位实验综述[J].深圳大学学报理工版,2021,38(5):441.[doi:10.3724/SP.J.1249.2021.05441]
 JIAN Nan,YIN Meijie,ZHANG Xi,et al.In situ experiments of high resolution transmission electron microscopy: a review[J].Journal of Shenzhen University Science and Engineering,2021,38(1):441.[doi:10.3724/SP.J.1249.2021.05441]

备注/Memo

备注/Memo:
Received: 2022- 06-27; Accepted: 2022-10-24; Online (CNKI): 2022-12-16
Foundation: National Natural Science Foundation of China (52011540005, 11904235)
Corresponding author: Professor DIAO Dongfeng. E-mail: dfdiao@szu.edu.cn
Citation: YIN Meijie, JIAN Nan, ZHANG Xi, et al. Review on the spatial resolution of transmission electron microscope [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(1): 1-13.(in Chinese)
基金项目:国家自然科学基金资助项目(52011540005,11904235)
作者简介:尹美杰(1983—),深圳大学实验师、博士.研究方向:高分辨电子显微学的应用.E-mail: yinmj@szu.edu.cn
引文:尹美杰,健男,张熙,等.透射电子显微镜空间分辨率综述[J].深圳大学学报理工版,2023,40(1):1-13.
更新日期/Last Update: 2023-01-30