参考文献/References:
[1] HELLSTR?M A, SMITH L E, DAMMANN O. Retinopathy of prematurity [J]. The Lancet, 2013, 382(9902): 1445-1457.
[2] 尹虹,黎晓新,李慧玲,等.早产儿视网膜病变的筛查及其相关因素分析[J].中华眼科杂志,2005,41(4):295-299.
YIN Hong, LI Xiaoxing, LI Huiling, et al. Screening of retinopathy of prematurity and analysis of its related factors [J]. Chinese Journal of Ophthalmology, 2005, 41(4): 295-299.(in Chinese)
[3] BLENCOWE H, LAWN J E, VAZQUEZ T, et al. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010 [J]. Pediatric Research, 2013, 74(Suppl.1): 35-49.
[4] 曹静,朱艳萍,李明霞.早产儿视网膜病变发病情况对比研究[J].中国新生儿科杂志,2016,31(5):330-334.
CAO Jing, ZHU Yanping, LI Mingxia. A comparative study on the incidence of retinopathy of prematurity [J]. Chinese Journal of Neonatology, 2016, 31(5): 330-334.(in Chinese)
[5] An International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited [J]. Archives of Ophthalmology, 2005, 123(7): 991-999.
[6] ZHANG Yinsheng, WANG Li, WU Zhenquan, et al. Development of an automated screening system for retinopathy of prematurity using a deep neural network for wide-angle retinal images [J]. IEEE Access, 2018: 7: 10232-10241.
[7] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017,60(6): 84-90.
[8] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL].(2014-09-04) [2015-04-10].https://arxiv.org/pdf/1409.1556.pdf.
[9] WANG Jianyong, JU Rong, CHEN Yuanyuan, et al. Automated retinopathy of prematurity screening using deep neural networks [J]. EBioMedicine, 2018, 35: 361-368.
[10] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[11] WOO S, PARK J, LEE J-Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision. Munich, Germany: Springer, 2018: 3-19.
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31th International Conference on Neural Information Processing Systems. Red Hook, USA: Curran Associates Inc, 2017: 6000-6010.
[13] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 × 16 words: transformers for image recognition at scale [EB/OL]. (2020-10-22)[2021-06-03]. https://arxiv.org/pdf/2010.11929.pdf
[14] SRINIVAS A, LIN T-Y, PARMAR N, et al. Bottleneck transformers for visual recognition [C]// Conference On Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021: 16514-16524.
[15] CHAPELLE O, SCHOLKOPF B, ZIEN A. Semi-supervised learning (chapelle, o. et al., eds.; 2006) [book reviews] [J]. IEEE Transactions on Neural Networks, 2009, 20(3): 542-542.
[16] LEE D-H. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks [EB/OL] // [2013-01-31]. https://www.kaggle.com/blobs/download/forum-message-attachment-files/746/pseudo_label_final.pdf
[17] SAJJADI M, JAVANMARDI M, TASDIZEN T. Regularization with stochastic transformations and perturbations for deep semi-supervised learning [C]// Proceedings of the 31th International Conference on Neural Information Processing Systems. Red Hook, USA: Curran Associates Inc, 2016: 1171-1179.
[18] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results [C]// Proceedings of the 31th International Conference on Neural Information Processing Systems. Red Hook, USA: Curran Associates Inc, 2017: 1195-1204.
[19] MIYATO T, MAEDA S-I, KOYAMA M, et al. Virtual adversarial training: a regularization method for supervised and semi-supervised learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1979-1993.
[20] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples [EB/OL]. (2014-10-20) [2015-02-25]. https://arxiv.org/pdf/1412.6572.pdf.
[21] SOHN K, BERTHELOT D, LI C-L, et al. Fixmatch: simplifying semi-supervised learning with consistency and confidence [C]// The 34th Conference on Neural Information Proceesing Systems. Red Hook, USA: Curran Associates Inc, 2020: 596-608.
[22] SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations [EB/OL]. (2018-03-06) [2018-04-12]. https://arxiv.org/pdf/1803.02155.pdf.
[23] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE Computer Society, 2017: 618-626.
相似文献/References:
[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(6):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(6):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(6):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(6):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(1):43.[doi:10.3724/SP.J.1249.2014.01043]
Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(6):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):367.[doi:10.3724/SP.J.1249.2014.04367]
[8]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(6):196.[doi:10.3724/SP.J.1249.2015.02000]
[9]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(6):281.[doi:10.3724/SP.J.1249.2015.03281]
[10]王守觉,鲁华祥,陈向东,等.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报理工版,1997,14(1):8.
Wang Shoujue,Lu Huaxiang,Chen Xiangdong and Zeng Yujuan.On the Hardware for Artificial Neural Networks and Neurocomputer[J].Journal of Shenzhen University Science and Engineering,1997,14(6):8.