[1]张超,杨忆.求解大规模优化问题的改进正弦余弦算法[J].深圳大学学报理工版,2022,39(6):684-692.[doi:10.3724/SP.J.1249.2022.06684]
 ZHANG Chao and YANG Yi,Improved sine cosine algorithm for large-scale optimization problems[J].Journal of Shenzhen University Science and Engineering,2022,39(6):684-692.[doi:10.3724/SP.J.1249.2022.06684]
点击复制

求解大规模优化问题的改进正弦余弦算法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第6期
页码:
684-692
栏目:
电子与信息科学
出版日期:
2022-11-15

文章信息/Info

Title:
Improved sine cosine algorithm for large-scale optimization problems
文章编号:
202206010
作者:
张超1杨忆23
1)宿州职业技术学院计算机信息系,安徽宿州 234101
2)淮北师范大学计算机科学与技术学院,安徽淮北 235000
3)安徽省认知行为智能计算与应用工程研究中心,安徽淮北 235000
Author(s):
ZHANG Chao1 and YANG Yi2 3
1) Department of Computer Information, Suzhou Vocational and Technological College, Suzhou 234101, Anhui Province, P.R.China
2) College of Computer Science and Technology, Huaibei Normal University, Huaibei 235000, Anhui Province, P.R.China
3) Anhui Engineering Research Center for Intelligent Computing and Application on Cognitive Behavior (ICACB), Huaibei 235000, Anhui Province, P.R.China
关键词:
人工智能正弦余弦算法大规模优化问题Lévy飞行基于距离的非线性参数调整收敛速度收敛精度
Keywords:
artificial intelligence sine cosine algorithm large-scale optimization problems Lévy flight nonlinear parameter adjustment based on distance convergence speed convergence accuracy
分类号:
TP301.6
DOI:
10.3724/SP.J.1249.2022.06684
文献标志码:
A
摘要:
针对正弦余弦算法(sine cosine algorithm, SCA)在求解大规模优化问题时收敛精度低、收敛速度慢和易陷入“维数灾难”的不足,提出一种带Lévy飞行的正弦余弦算法(sine cosine algorithm with Lévy flight, SCAL).SCAL算法通过将Lévy飞行分布与正弦余弦种群个体位置向量进行对应元素相乘运算,使Lévy飞行分布的特征和信息融入正弦余弦种群个体信息中,使其拥有Lévy飞行随机游走的特性,增强了个体局部开发和逃离局部极值的能力;采用基于空间距离的非线性参数调整方法,平衡算法的局部开发和全局搜索,提高了算法的收敛速度.在14个经典测试函数上,维度分别为100、1 000和 5 000维时,与SCA、花授粉算法(flower pollination algorithm, FPA)、粒子群优化(particle swarm optimization, PSO)算法、麻雀搜索算法(sparrow search algorithm, SSA)和鲸鱼优化算法(whale optimization algorithm, WOA)5种群体智能算法进行仿真对比实验.结果表明,SCAL算法在收敛精度、收敛速度和鲁棒性上较5种群体智能算法优势明显.与解决大规模优化问题的改进狼群算法(improved wolf pack algorithm, IWPA)、改进花授粉算法(improved flower pollination algorithm, IFPA)、鲸鱼算法的两种改进版本IWOA(improved whale optimization algorithm)和MWOA(modified whale optimization algorithm)进行比较,发现SCAL的整体寻优结果优于对比算法,在求解大规模优化问题上具有显著优势和竞争力.
Abstract:
Aiming at the shortcomings of the sine cosine algorithm (SCA) in solving the large-scale optimization problems, such as low accuracy, slow convergence speed, and being easy to fall into the dimension disaster, we propose an sine cosine algorithm with Lévy flight (SCAL). By using the element-by-element multiplication of the Lévy flight distribution with the individual position vector of sine and cosine population, the characteristics and information of Lévy flight distribution are integrated into the individual information, so that it can possess the characteristic of random walk of Lévy flight and enhances the ability of local exploitation to escape from local extremum. A novel nonlinear parameter adjustment method based on spatial distance is adopted to balance the local exploitation and global exploration, which improves the convergence speed of the algorithm. On 14 classic test functions with dimensions of 100, 1 000 and 5 000 respectively, SCAL is compared with five swarm intelligence algorithms including SCA, flower pollination algorithm (FPA), particle swarm optimization (PSO) algorithm, sparrow search algorithm (SSA) and whale optimization algorithm (WOA). The experimental results indicate that SCAL has a significant advantage over the five swarm intelligence algorithms in terms of convergence accuracy, convergence speed and robustness. Compared with the improved wolf pack algorithm (IWPA), the improved flower pollination algorithm (IFPA), the improved whale optimization algorithm (IWOA), and the modified whale optimization algorithm (MWOA), which are suitable for solving large scale optimization problems, it is found that the overall optimization result of SCAL is better than the comparison algorithms and thus demonstrate that the proposed algorithm has the obvious advantages and competitiveness for solving large-scale optimization problems.

参考文献/References:

[1] 梁静,刘睿,于坤杰,等.求解大规模问题协同进化动态粒子群优化算法[J].软件学报,2018,29(9):2595-2605.
LIANG Jing, LIU Rui, YU Kunjie, et al. Dynamic multi-swarm particle swarm optimization with cooperative evolution for large scale global optimization [J]. Journal of Software, 2018, 29(9): 2595-2605.(in Chinese)
[2] RAHNAMAYAN S, WANG G G. Solving large scale optimization problems by opposition-based differential evolution (ODE) [J]. WSEAS Transactions on Computers, 2008, 7(10): 1792-1804.
[3] 陈暄,孟凡光,吴吉义.求解大规模优化问题的改进狼群算法[J].系统工程理论与实践,2021,41(3):790-808.
CHEN Xuan, MENG Fanguang, WU Jiyi. Improved wolf pack algorithm for large-scale optimization problems [J].Systems Engineering-Theory & Practice, 2021, 41(3): 790-808.(in Chinese)
[4] MA Yongjie, BAI Yulong. A multi-population differential evolution with best-random mutation strategy for large scale global optimization [J]. Applied Intelligence, 2020, 50(5): 1510-1526.
[5] OMIDVAR M N, LI Xiaodong, MEI Yi, et al. Cooperative co-evolution with differential grouping for large scale optimization [J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 378-393.
[6] JIA Yahui, CHEN Weineng, GU Tianlong, et al. Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization [J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 188-202.
[7] OMIDVAR M. Cooperative co-evolutionary algorithms for large-scale optimization [D]. Melbourne: RMIT University, 2015.
[8] CHENG Ran, JIN Yaochu. A social learning particle swarm optimization algorithm for scalable optimization [J]. Information Sciences, 2015, 291: 43-60.
[9] WANG Hao, LIANG Mengnan, SUN Chaoli, et al. Multiple-strategy learning particle swarm optimization for large-scale optimization problems [J]. Complex & Intelligent Systems, 2020, 7: 1-16.
[10] 龙文,蔡绍洪,焦建军,等.求解大规模优化问题的改进鲸鱼优化算法[J].系统工程理论与实践,2017,37(11):2983-2994.
LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems [J]. Systems Engineering-Theory & Practice, 2017, 37(11): 2983-2994.(in Chinese)
[11] 李煜,郑娟,刘景森.大规模优化问题的改进花授粉算法[J].计算机科学与探索,2020,14(8):1427-1440.
LI Yu, ZHENG Juan, LIU Jingsen. Improved flower pollination algorithm for large scale optimization problems [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1427-1440.(in Chinese)
[12] TIAN Ye, LIU Ruchen, ZHANG Xingyi, et al. A multi-population evolutionary algorithm for solving large scale multi-modal multi-objective optimization problems [J]. IEEE Transactions on Evolutionary Computation, 2021, 3(25): 405-418.
[13] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems [J]. Knowledge-based Systems, 2016, 95: 120-133.
[14] GUPTA S, DEEP K, MIRJALILI S, et al. A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization [J]. Expert Systems with Applications, 2020, 154: 113395.
[15] 刘小娟,王联国.一种基于差分进化的正弦余弦算法[J].工程科学学报,2020,42(12):1674-1684.
LIU Xiaojuan, WANG Lianguo. A sine cosine algorithm based on differential evolution [J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684.(in Chinese)
[16] CHEGINI S N, BAGHERI A, NAJAFI F. PSOSCALF: a new hybrid PSO based on sine cosine algorithm and Lévy flight for solving optimization problems [J]. Applied Soft Computing, 2018, 73: 697726.
[17] YANG Xinshe. Nature inspired optimization algorithms [M]. London: Elsevier, 2014.
[18] MANTEGNA R N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes [J]. Physical Review E: Statistical Physics-Plasmas Fluids & Related Interdisciplinary Topics, 1994, 49(5): 4677-4683.
[19] YANG Xinshe, KARAMANOGLU M, HE Xingshi. Flower pollination algorithm: a novel approach for multiobjective optimization [J]. Engineering Optimization, 2013, 46(9): 1222-1237.
[20] SHI Yuhui, EBERHART R C. A modified particle optimizer [C]// Proceedings of the IEEE Conference on Evolutionary Computation. Anchorage, USA: IEEE, 1998: 6973.
[21] XUE Jiankai, SHEN Bo. A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Systems Science & Control Engineering. 2020, 8(1): 22-34.
[22] MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51-67.
[23] SUN Yongjun, WANG Xilu, CHEN Yahuan, et al. A modified whale optimization algorithm for large-scale global optimization problems [J]. Expert Systems with Applications, 2018, 114: 563-577.

相似文献/References:

[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
 PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(6):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
 LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(6):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
 CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(6):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
 ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(6):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(1):43.[doi:10.3724/SP.J.1249.2014.01043]
 Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
 Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(6):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
 Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):367.[doi:10.3724/SP.J.1249.2014.04367]
[8]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
 Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(6):196.[doi:10.3724/SP.J.1249.2015.02000]
[9]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
 Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(6):281.[doi:10.3724/SP.J.1249.2015.03281]
[10]王守觉,鲁华祥,陈向东,等.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报理工版,1997,14(1):8.
 Wang Shoujue,Lu Huaxiang,Chen Xiangdong and Zeng Yujuan.On the Hardware for Artificial Neural Networks and Neurocomputer[J].Journal of Shenzhen University Science and Engineering,1997,14(6):8.

备注/Memo

备注/Memo:
Received: 2022- 01-10; Accepted: 2022-05-11; Online (CNKI): 2022-10-10
Foundation: The Excellent Youth Talent Support Program in Higher Education Institutions of Anhui Province (gxyqZD2019125); Natural Science Foundation in Higher Education Institutions of Anhui Province (KJ2020A0035, KJ2017A843)
Corresponding author: Associate professor ZHANG Chao.E-mail: zc2001888@163.com
Citation: ZHANG Chao, YANG Yi. Improved sine cosine algorithm for large-scale optimization problems [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(6): 684-692.(in Chinese)
基金项目:安徽省高校优秀青年人才基金资助项目(gxyqZD2019125);安徽省高等学校自然科学研究基金资助项目(KJ2020A0035,KJ2017A843)
作者简介:张超(1980—),宿州职业技术学院副教授.研究方向:进化计算和大数据应用.E-mail: zc2001888@163.com
引文:张超,杨忆.求解大规模优化问题的改进正弦余弦算法[J].深圳大学学报理工版,2022,39(6):684-692.
更新日期/Last Update: 2022-11-30