参考文献/References:
[1] 梁静,刘睿,于坤杰,等.求解大规模问题协同进化动态粒子群优化算法[J].软件学报,2018,29(9):2595-2605.
LIANG Jing, LIU Rui, YU Kunjie, et al. Dynamic multi-swarm particle swarm optimization with cooperative evolution for large scale global optimization [J]. Journal of Software, 2018, 29(9): 2595-2605.(in Chinese)
[2] RAHNAMAYAN S, WANG G G. Solving large scale optimization problems by opposition-based differential evolution (ODE) [J]. WSEAS Transactions on Computers, 2008, 7(10): 1792-1804.
[3] 陈暄,孟凡光,吴吉义.求解大规模优化问题的改进狼群算法[J].系统工程理论与实践,2021,41(3):790-808.
CHEN Xuan, MENG Fanguang, WU Jiyi. Improved wolf pack algorithm for large-scale optimization problems [J].Systems Engineering-Theory & Practice, 2021, 41(3): 790-808.(in Chinese)
[4] MA Yongjie, BAI Yulong. A multi-population differential evolution with best-random mutation strategy for large scale global optimization [J]. Applied Intelligence, 2020, 50(5): 1510-1526.
[5] OMIDVAR M N, LI Xiaodong, MEI Yi, et al. Cooperative co-evolution with differential grouping for large scale optimization [J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 378-393.
[6] JIA Yahui, CHEN Weineng, GU Tianlong, et al. Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization [J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 188-202.
[7] OMIDVAR M. Cooperative co-evolutionary algorithms for large-scale optimization [D]. Melbourne: RMIT University, 2015.
[8] CHENG Ran, JIN Yaochu. A social learning particle swarm optimization algorithm for scalable optimization [J]. Information Sciences, 2015, 291: 43-60.
[9] WANG Hao, LIANG Mengnan, SUN Chaoli, et al. Multiple-strategy learning particle swarm optimization for large-scale optimization problems [J]. Complex & Intelligent Systems, 2020, 7: 1-16.
[10] 龙文,蔡绍洪,焦建军,等.求解大规模优化问题的改进鲸鱼优化算法[J].系统工程理论与实践,2017,37(11):2983-2994.
LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems [J]. Systems Engineering-Theory & Practice, 2017, 37(11): 2983-2994.(in Chinese)
[11] 李煜,郑娟,刘景森.大规模优化问题的改进花授粉算法[J].计算机科学与探索,2020,14(8):1427-1440.
LI Yu, ZHENG Juan, LIU Jingsen. Improved flower pollination algorithm for large scale optimization problems [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1427-1440.(in Chinese)
[12] TIAN Ye, LIU Ruchen, ZHANG Xingyi, et al. A multi-population evolutionary algorithm for solving large scale multi-modal multi-objective optimization problems [J]. IEEE Transactions on Evolutionary Computation, 2021, 3(25): 405-418.
[13] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems [J]. Knowledge-based Systems, 2016, 95: 120-133.
[14] GUPTA S, DEEP K, MIRJALILI S, et al. A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization [J]. Expert Systems with Applications, 2020, 154: 113395.
[15] 刘小娟,王联国.一种基于差分进化的正弦余弦算法[J].工程科学学报,2020,42(12):1674-1684.
LIU Xiaojuan, WANG Lianguo. A sine cosine algorithm based on differential evolution [J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684.(in Chinese)
[16] CHEGINI S N, BAGHERI A, NAJAFI F. PSOSCALF: a new hybrid PSO based on sine cosine algorithm and Lévy flight for solving optimization problems [J]. Applied Soft Computing, 2018, 73: 697726.
[17] YANG Xinshe. Nature inspired optimization algorithms [M]. London: Elsevier, 2014.
[18] MANTEGNA R N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes [J]. Physical Review E: Statistical Physics-Plasmas Fluids & Related Interdisciplinary Topics, 1994, 49(5): 4677-4683.
[19] YANG Xinshe, KARAMANOGLU M, HE Xingshi. Flower pollination algorithm: a novel approach for multiobjective optimization [J]. Engineering Optimization, 2013, 46(9): 1222-1237.
[20] SHI Yuhui, EBERHART R C. A modified particle optimizer [C]// Proceedings of the IEEE Conference on Evolutionary Computation. Anchorage, USA: IEEE, 1998: 6973.
[21] XUE Jiankai, SHEN Bo. A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Systems Science & Control Engineering. 2020, 8(1): 22-34.
[22] MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51-67.
[23] SUN Yongjun, WANG Xilu, CHEN Yahuan, et al. A modified whale optimization algorithm for large-scale global optimization problems [J]. Expert Systems with Applications, 2018, 114: 563-577.
相似文献/References:
[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(6):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(6):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(6):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(6):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(1):43.[doi:10.3724/SP.J.1249.2014.01043]
Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(6):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):367.[doi:10.3724/SP.J.1249.2014.04367]
[8]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(6):196.[doi:10.3724/SP.J.1249.2015.02000]
[9]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(6):281.[doi:10.3724/SP.J.1249.2015.03281]
[10]王守觉,鲁华祥,陈向东,等.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报理工版,1997,14(1):8.
Wang Shoujue,Lu Huaxiang,Chen Xiangdong and Zeng Yujuan.On the Hardware for Artificial Neural Networks and Neurocomputer[J].Journal of Shenzhen University Science and Engineering,1997,14(6):8.