参考文献/References:
[1] IGELNIK B, PAO Y H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net [J]. IEEE transactions on Neural Networks, 1995, 6(6): 1320-1329.
[2] REN Y, SUGANTHAN P N, SRIKANTH N, et al. Random vector functional link network for short-term electricity load demand forecasting [J]. Information Sciences, 2016, 367: 1078-1093.
[3] ZHANG Le, SUGANTHAN P N. A comprehensive evaluation of random vector functional link networks [J]. Information Sciences, 2016, 367: 1094-1105.
[4] SCHMIDT W F, KRAAIJVELD M A, DUIN R P. Feedforward neural networks with random weights [C]// The 11th IAPR International Conference on Pattern Recognition. The Hague, Netherlands: IEEE, 1992: 1-4.
[5] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
[6] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 42(2): 513-529.
[7] HUANG Gao, HUANG Guangbin, SONG Shiji, et al. Trends in extreme learning machines: a review [J]. Neural Networks. 2015, 61: 32-48.
[8] LI Feng, YANG Jie, YAO Mingchen, et al. Extreme learning machine with local connections [J]. Neurocomputing, 2019, 368: 146-152.
[9] HE Yulin, YUAN Zhenhao, HUANG Zhexue. Random vector functional link network with subspace-based local connections [J]. Applied Intelligence, 2022. doi: 10.1007/s10489-022-03404-8.
[10] 栾亚建,黄翀民,龚高晟,等.Hadoop平台的性能优化研究[J].计算机工程,2010,36(14):262-263,266.
LUAN Yajian, HUANG Chongmin, GONG Gaosheng, et al. Research on performance optimization of Hadoop platform [J]. Computer Engineering, 2010, 36(14): 262-263, 266.(in Chinese)
[11] SUN Yongjiao, YUAN Ye, WANG Guoren. An OS-ELM based distributed ensemble classification framework in P2P networks [J]. Neurocomputing, 2011, 74(16): 2438-2443.
[12] XIN Junchang, WANG Zhiqiong, CHEN Chen, et al. ELM*: distributed extreme learning machine with map Reduce [J]. World Wide Web, 2014, 17(5): 1189-1204.
[13] CHEN Jiaoyan, CHEN Huajun, WAN Xiangyi, et al. MR-ELM: a mapReduce-based framework for large-scale ELM training in big data era [J]. Neural Computing and Applications, 2016, 27(1): 101-110.
[14] 邓万宇,李力,牛慧娟. 基于Spark的并行极速神经网络[J]. 郑州大学学报工学版,2016,37(5):47-56.
DENG Wanyu, LI Li, NIU Huijuan. Parallel extremely fast neural network based on Spark [J]. Journal of Zhengzhou University Engineering Edition, 2016, 37(5): 47-56.(in Chinese)
[15] 杨敏,刘黎志,邓开巍,等. 基于Spark的自适应差分进化极限学习机研究[J]. 武汉工程大学学报, 2021,43(3):318-323.
YANG Min, LIU Lizhi, DENG Kaiwei, et al. Research on adaptive differential evolution extreme learning machine based on Spark [J]. Journal of Wuhan Institute of Technology, 2021, 43(3): 318-323.(in Chinese)
[16] SCARDAPANE S, WANG D, PANELLA M, et al. Distributed learning for random vector functional-link networks [J]. Information Sciences, 2015, 301: 271-284.
[17] SCARDAPANE S, PANELLA M, COMMINIELLO D, et al. Learning from distributed data sources using random vector functional-link networks [J]. Procedia Computer Science, 2015, 53: 468-477.
[18] ROSATO A, ALTILIO R, PANELLA M. On-line learning of RVFL neural networks on finite precision hardware [C]// The 2018 IEEE International Symposium on Circuits and Systems. Florence, Italy: IEEE, 2018: 1-5.
[19] 赵立杰,陈征,张立强,等.基于交替方向乘子法的球磨机负荷分布式随机权值神经网络模型[J].数据挖掘,2018,8(1):1-8.
ZHAO Lijie, CHEN Zheng, ZHANG Liqiang, et al. Distributed random weight neural network model for ball mill load based on alternating direction multiplier method [J]. Hans Journal of Data Mining, 2018, 8(1): 1-8.(in Chinese)
[20] XIE Jin, LIU Sanyang, DAI Hao, et al. Distributed semi-supervised learning algorithms for random vector functional-link networks with distributed data splitting across samples and features [J]. Knowledge-Based Systems, 2020, 195: 105577.
[21] 黄哲学,何玉林,魏丞昊,等.大数据随机样本划分模型及相关分析计算技术[J].数据采集与处理,2019,34(3):373-385.
HUANG Zhexue, HE Yulin, WEI Chenhao, et al. Big data random sample partition model and related analysis and calculation technology [J]. Journal of Data Acquisition and Processing, 2019, 34(3): 373-385.(in Chinese)
[22] HASAN B T, ABDULLAH D B. A survey of scheduling tasks in big data: Apache Spark [C]// The International Conference on Micro-Electronics and Telecommunication Engineering. Singapore: Springer, 2022: 405-414.
[23] SHAFER J, RIXNER S, COX A L. The hadoop distributed filesystem: balancing portability and performance [C]// IEEE International Symposium on Performance Analysis of Systems & Software. New York, USA: IEEE, 2010: 122-133.
[24] OMAR H K, JUMAA A K. Distributed big data analysis using spark parallel data processing [J]. Bulletin of Electrical Engineering and Informatics, 2022, 11(3): 1505-1515.
相似文献/References:
[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(6):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(6):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(6):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(6):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(1):43.[doi:10.3724/SP.J.1249.2014.01043]
Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(6):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):367.[doi:10.3724/SP.J.1249.2014.04367]
[8]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(6):196.[doi:10.3724/SP.J.1249.2015.02000]
[9]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(6):281.[doi:10.3724/SP.J.1249.2015.03281]
[10]王守觉,鲁华祥,陈向东,等.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报理工版,1997,14(1):8.
Wang Shoujue,Lu Huaxiang,Chen Xiangdong and Zeng Yujuan.On the Hardware for Artificial Neural Networks and Neurocomputer[J].Journal of Shenzhen University Science and Engineering,1997,14(6):8.