[1]孙猛,姜官军,冯继哲,等.竖井乏风废热提取用于井口防冻的现场实测[J].深圳大学学报理工版,2022,39(6):637-641.[doi:10.3724/SP.J.1249.2022.06637]
 SUN Meng,JIANG Guanjun,et al.The field measurement of wellhead anti-freezing technology using exhaust wind waste heat[J].Journal of Shenzhen University Science and Engineering,2022,39(6):637-641.[doi:10.3724/SP.J.1249.2022.06637]
点击复制

竖井乏风废热提取用于井口防冻的现场实测()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第6期
页码:
637-641
栏目:
土木与建筑工程
出版日期:
2022-11-15

文章信息/Info

Title:
The field measurement of wellhead anti-freezing technology using exhaust wind waste heat
文章编号:
202206004
作者:
孙猛12姜官军3冯继哲2马天泽2周琳2
1)中国矿业大学深部岩土力学与地下工程国家重点实验室,江苏徐州 221116
2)中国矿业大学力学与土木工程学院,江苏徐州 221116
3)山东美天能源科技股份有限公司,山东泰安 271019
Author(s):
SUN Meng1 2 JIANG Guanjun3 FENG Jizhe2 MA Tianze2 and ZHOU Lin2
1) State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, P.R.China
2) School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, P.R.China
3) Shandong Meitian Energy Technology Co.Ltd., Tai’an 271019, Shandong Province, P.R.China
关键词:
岩土工程节能技术乏风废热井口防冻乏风-新风换热
Keywords:
geotechnical engineering energy-saving technology exhaust wind waste heat wellhead anti-freezing heat transfer between exhaust wind and fresh wind
分类号:
TK89
DOI:
10.3724/SP.J.1249.2022.06637
文献标志码:
A
摘要:
为解决夏热冬冷地区、寒冷地区和严寒地区冬季井口防冻和节能减排等问题,提出了新型的矿井乏风-新风间壁式直接换热技术,并在神华宁夏煤业集团有限公司付诸实施. 对某煤矿进行现场实测发现:换热后的新风输送至井口,与部分室外新风混合后的温度不低于2 ℃,满足煤矿规范要求;通过滴状冷凝充分吸收乏风中的潜热,换热过程不需要额外能源,仅需为新风提供动力,供暖期性能系数(制热量与输入功率的比值)达到12.1;通过替代原有2×104 kg燃煤锅炉,年减排二氧化碳1.881×107 kg、氮氧化物4.8×104 kg、二氧化硫4.8×104 kg;矿井乏风直接排放至大气中的矿尘减少2.178×104 kg/a.该系统单个供暖季运行费用仅为225.85万元,比天然气锅炉系统节省426.65万元,比燃煤锅炉系统节省799.81万元.间壁式乏风-新风直接换热技术不仅运行费用低,而且运行过程无废水、废气及废渣等污染,是一项绿色环保、高效节能的新技术,为建设现代化新型绿色矿山提供一条新途径.
Abstract:
A new type of directly heat transfer technology between exhaust wind and fresh air was proposed and put into practice in Shenhua Ningxia Coal Industry Group Co. Ltd. so as to solve the problems of wellhead anti-freezing, energy saving and emission reduction in hot-summer-cold-winter region, cold region and severe cold region in winter. The field measurement results show that after heated and transported to the wellhead, the fresh air is mixed with some outdoor fresh air, and its temperature is not less than 2 ℃, which meets the requirements of coal mine specifications; the latent heat in the exhaust wind is fully absorbed through droplet condensation, and the heat transfer process does not need additional energy, but only the fresh air needs power. The average coefficient of performance (ratio of heating capacity to input power) in a heating period reaches 12.1, by replacing the original 2.0×104 kg of coal-fired boilers with new technology, the emissions of 1.881×107 kg carbon dioxide, 4.8×104 kg nitrogen oxides, 4.8×104 kg of sulfur dioxide, and 2.178×104 kg of dust directly, which used to be discharged into the atmosphere by mine exhaust wind, will be reduced annually. The operating cost of the system is only 2.258 5 million Yuan per heating season, saving 4.266 5 million Yuan compared with the natural gas boiler system and 7.998 1 million Yuan compared with the coal-fired boiler system. The use of wall type exhaust wind and fresh air direct heat transfer technology has low operation cost, and it has no pollution of waste water, waste gas and waste residue in the operation process. It is a green environmental protection, high efficiency and energy saving technology, and can provide technical support for the construction of new modern and green mine.

参考文献/References:

[1] 左强,李康,陈建刚,等.煤矿回风余热用于井筒防冻的潜力分析[J].中国煤炭,2019,45(1):147-152.
ZUO Qiang, LI Kang, CHEN Jiangang, et al. Analysis on coal mine return air waste-heat used for potential of mineshaft antifreeze [J]. China Coal, 2019, 45(1): 147-152.(in Chinese)
[2] 苏健,梁英波,丁麟,等.碳中和目标下我国能源发展战略探讨[J].中国科学院院刊,2021,36(9):1001-1009.
SU Jian, LIANG Yingbo, DING Lin, et al. Research on China’s energy development strategy under carbon neutrality [J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1001-1009.(in Chinese)
[3] FENG X, JIA Z, LIAG H, et al. A full air cooling and heating system based on mine water source [J]. Applied Thermal Engineering, 2018, 145: 610-617.
[4] 熊慧灵. 矿井回风热能回收热湿传递及换热效率研究[D]. 湘潭:湖南科技大学,2016.
WU Huiling. Study of heat-mass transfer and thermal efficiency on heat recovery of mine return air [D]. Xiangtan: Hunan University of Science and Technology, 2016.(in Chinese)
[5] 武亚丽. 深井地热水梯级综合利用及回用研究[D]. 西安:西安工程大学,2017.
WU Yali. Study on comprehensive cascade utilization and reuse of deep geothermal water [D]. Xi’an: Xi’an Polytechnic University, 2017.(in Chinese)
[6] 辛嵩,张兆鹏.矿井回风余热分离式热管回收技术研究[J].矿业研究与开发,2020,40(11):160-164.
XIN Song, ZHANG Zhaopeng. Research on separate-type heat pipe recovery technology of mine return air waste heat [J]. Mining Research and Development, 2020, 40(11): 160-164.(in Chinese)
[7] 倪少军,陈明辉,苏明强.间壁式换热器矿井乏风废热利用技术与工程实例研究[J].价值工程,2020,39(7):207-209.
NI Shaojun, CHEN minghui, SU Mingqiang. Study on the technology and engineering example of waste air waste heat utilization in partition wall heat exchanger [J]. Value Engineering, 2020, 39(7): 207-209.(in Chinese)
[8] 彭兆勇.乏风余热利用工程在刘庄煤矿西区的应用[J].山西科技,2019,34(3):128-132.
PENG Zhaoyong. Application of ventilation air methane waste heat utilization project in west area of Liuzhuang coal mine [J]. Shanxi Science and Technology, 2019, 34(3): 128-132.(in Chinese)
[9] 郭强,苗小伟.乏风余热利用技术在潞宁煤业的应用[J].山西化工,2017,37(5):109-111.
GUO Qiang, MIAO Xiaowei. Application of waste heat utilization technology in Luning coal industry [J]. Shanxi Chemical Industry, 2017, 37(5): 109-111.(in Chinese)
[10] 鲍玲玲,李亚楠. 矿井回风余热回收用热管换热器的优化设计[J]. 煤矿机电,2018(1):1-5.
BAO Lingling, LI Yanan. Optimal design of heat pipe exchanger for return air wasted heat reclaim in coal mine [J]. Colliery Mechanical & Electrical Technology, 2018(1): 1-5.(in Chinese)
[11] 王宏. 梯度表面能材料上液滴运动及滴状凝结换热[D].重庆:重庆大学,2008.
WANG Hong. Motion of droplets and dropwise condensation on the gradient surface [D]. Chongqing: Chongqing University, 2008.(in Chinese)

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(6):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(6):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(6):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(6):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(6):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(6):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(6):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(6):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(6):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(6):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
Received: 2021-11- 23; Accepted: 2022-02-10; Online (CNKI): 2022-03-17
Foundation: National Natural Science Foundation of China (51978653)
Corresponding author: Lecturer SUN Meng. E-mail: sunmengpro@foxmail.com
Citation: SUN Meng, JIANG Guanjun, FENG Jizhe, et al. The field measurement of wellhead anti-freezing technology using exhaust wind waste heat [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(6): 637-641.(in Chinese)
基金项目:国家自然科学基金资助项目(51978653)
作者简介:孙猛(1982—),中国矿业大学讲师、博士.研究方向:矿井降温与热能利用、冻结法施工.E-mail: sunmengpro@foxmail.com
引 文:引用格式:孙猛,姜官军,冯继哲,等.竖井乏风废热提取用于井口防冻的现场实测[J].深圳大学学报理工版,2022,39(06):637-641.
更新日期/Last Update: 2022-11-30