[1]罗程程,吴宁,王华,等.水平气井气液两相管流压降预测[J].深圳大学学报理工版,2022,39(5):567-575.[doi:10.3724/SP.J.1249.2022.05567]
 LUO Chengcheng,WU Ning,WANG Hua,et al.Pressure gradient prediction of gas-liquid two-phase pipe flow in horizontal gas wells[J].Journal of Shenzhen University Science and Engineering,2022,39(5):567-575.[doi:10.3724/SP.J.1249.2022.05567]
点击复制

水平气井气液两相管流压降预测()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第5期
页码:
567-575
栏目:
环境与能源
出版日期:
2022-09-16

文章信息/Info

Title:
Pressure gradient prediction of gas-liquid two-phase pipe flow in horizontal gas wells
文章编号:
202205011
作者:
罗程程1 吴宁1 王华2 刘永辉1 张腾2 王本强2 吴朋勃3 刘军4
1)西南石油大学油气藏地质及开发工程国家重点实验室,四川成都 610500
2)川庆钻探工程有限公司页岩气勘探开发项目经理部,四川成都 610051
3)中国石化西南油气分公司采气四厂,重庆 402160;
4)中国石油西南油气田公司页岩气研究院,四川成都 610051
Author(s):
LUO Chengcheng1 WU Ning1 WANG Hua2 LIU Yonghui1 ZHANG Teng2 WANG Benqiang2 WU Pengbo3 and LIU Jun4
1) State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation in Southwest Petroleum University, Chengdu 610500, Sichuan Province, P.R.China
2) Shale Gas Exploration & Development Project Department, CNPC Chuanqing Drilling Engineering Co. Ltd., Chengdu 610051, Sichuan Province, P.R.China
3) The Fourth Gas Production Plant of SINOPEC Southwest Oil and Gas Field Branch, Chongqing 402160, P.R.China
4) Research Institute of Shale Gas, PetroChina Southwest Oil and Gas Field Company, Chengdu 610051, Sichuan Province, P.R.China
关键词:
油气田开发排水采气水平气井两相管流压降模型持液率压力转化流型转变
Keywords:
oil-gas field development gas deliquification horizontal gas wells two-phase pipe flow pressure gradient model liquid holdup pressure transition flow pattern transition
分类号:
TE37
DOI:
10.3724/SP.J.1249.2022.05567
文献标志码:
A
摘要:
准确预测气井压降是气井动态分析、优化配产和排采工艺设计的基础.水平气井复杂的井身结构和流动规律,导致单一压降预测模型精度难以在宽泛的气液范围内满足工程需求.为开展模型优选及优化,基于环状-搅动、搅动-段塞和段塞-泡状3个流型转变点,提出垂直井筒持液率半经验模型;基于垂直管与倾斜管中持液率的对应关系,提出倾斜管中持液率预测方法,构建水平井气液两相管流压降预测新模型.研究结果表明,气井气液两相管流压降研究的核心是准确预测持液率;随着倾角增大持液率先增加后降低,倾斜管持液率可基于垂直管持液率随角度的变化关系计算得到;在所有对比模型中构建的新模型与气井生产测井数据的相对性能系数最小,表明模型能够满足工程计算精度要求.构建的新模型适用于不同产量范围的水平气井气液两相管流的压降预测,可为现场生产分析提供技术支撑.
Abstract:
Accurate prediction of pressure gradient in gas wells is the theoretical basis for dynamic analysis, optimization of production and deliquification technologies design. Due to the complicated wellbore trajectories and flow behavior of horizontal gas wells, the accuracy of any existing prediction model of pressure gradient alone is difficult to meet engineering requirement within a wide range of gas-liquid ratio. Hence, a semi-empirical model of liquid holdup in a vertical wellbore is proposed based on three transition points: annular-churn, churn-slug and slug-bubble transition points. Based on the corresponding relationship between liquid holdups in the vertical pipe and the inclined pipe, a prediction method of liquid holdup in the inclined pipe is proposed, and thus a prediction model of pressure gradient in horizontal wells is established. The results show that the most important step in predicting pressure gradient of gas-liquid two-phase flow is the accurate prediction of liquid holdup. The liquid holdup increases first and then decreases with the increase of the inclination angle. Liquid holdup in inclined pipes can be predicted based on the variation of liquid holdup in the vertical pipe with the inclined angle. The relative performance factor (RPF) of the proposed model is the smallest compared with the gas-well logging data of the reference models, indicating the new model can meet the requirements of engineering calculation accuracy. It is concluded that the new model can be applied to the prediction of gas-liquid two-phase pressure gradient in horizontal gas wells with different production ranges, and can provide technical support for field production analysis.

参考文献/References:

[1] 刘永辉,吴朋勃,罗程程,等.泡沫排水采气适用界限的实验研究[J].深圳大学学报理工版,2020,37(5):490-496.
LIU Yonghui, WU Pengbo, LUO Chengcheng, et al. Experimental study on the applicable range of surfactant injection technology [J]. Journal of Shenzhen University Science and Engineering, 2020, 37(5): 490-496.(in Chinese)
[2] DUNS Jr H, ROS N C J. Vertical flow of gas and liquid mixtures in wells [C]// The 6th World Petroleum Congress, Frankfurt am Main, Germany: [s. n.], 1963: WPC-10132.
[3] ANSARI A M, SYLVESTER N D, SHOHAM O, et al. A comprehensive mechanistic model for upward two-phase flow in wellbores [C]//SPE Annual Technical Conference and Exhibition. [S. l.]: SPE Production & Facilities, 1990: 143-152.
[4] 陈德春,徐悦新,孟红霞,等.气井气液两相管流压降计算模型评价与优选[J].断块油气田,2017,24(6):840-843.
CHEN Dechun, XU Yuexin, MENG Hongxia, et al. Evaluation and optimization of pressure drop calculation models for gas-liquid two-phase pipe flow in gas well [J]. Fault-Block Oil & Gas Field, 2017, 24 (6): 840-843.(in Chinese)
[5] 田云,王志彬,李颖川,等.速度管排水采气井筒压降模型的评价及优选[J].断块油气田,2015,22(1):130-133.
TIAN Yu, WANG Zhibin, LI Yingchuan, et al. Evaluation and optimization of wellbore pressure drop model for drainage and gas recovery by velocity string [J]. Fault-Block Oil & Gas Field, 2015, 22(1): 130-133.(in Chinese)
[6] 刘永辉,艾先婷,罗程程,等.预测水平井携液临界气流速的新模型[J].深圳大学学报理工版,2018,35(6):551-557.
LIU Yonghui, AI Xianting, LUO Chengcheng, et al. A new model for predicting critical gas velocity of liquid loading in horizontal well [J]. Journal of Shenzhen University Science & Engineering, 2018, 35(6): 551-557.(in Chinese)
[7] MUKHERJEE H, BRILL J P. Liquid holdup correlations for inclined two-phase flow [J]. Journal of Petroleum Technology, 1983, 35(5): 1003-1008.
[8] GRAY H E. Vertical flow correlation in gas wells [R]. User’s Manual for API 14B, SSCSV Sizing Computer Program, 2nd ed., [S.l.: s.n.], 1978: 38-41.
[9] BEGGS D H, BRILL J P. A study of two-phase flow in inclined pipes [J]. Journal of Petroleum Technology, 1973, 25(5): 607-617.
[10] LIU Yonghui, LUO Chengcheng, ZHANG Liehui, et al. Experimental and modeling studies on the prediction of liquid loading onset in gas wells [J]. Journal of Natural Gas Science and Engineering, 2018, 57: 349-358.
[11] SAWANT P, ISHII M, MORI M. Droplet entrainment correlation in vertical upward co-current annular two-phase flow [J]. Nuclear Engineering and Design, 2008, 238(6): 1342-1352.
[12] FORE L B, BEUS S G, BAUER R C. Interfacial friction in gas-liquid annular flow: analogies to full and transition roughness [J]. International Journal of Multiphase Flow, 2000, 26: 1755-1769.
[13] BENDIKSEN K H. An experimental investigation of the motion of long bubbles in inclined tubes [J]. International Journal of Multiphase Flow, 1984, 10(4): 467-483.
[14] TENGESDAL J ?, KAYA A S, SARICA C. Flow-pattern transition and hydrodynamic modeling of churn flow [J]. SPE Journal, 1999, 4(4): 342-348.
[15] HARMATHY T Z. Velocity of large drops and bubbles in media of infinite or restricted extent [J]. Aiche Journal, 1960, 6(2): 281-288.
[16] HASAN A R, KABIR C S. A study of multiphase flow behavior in vertical wells [J]. Society of Petroleum Engineers, 1988, 3(2): 263-272.
[17] HEWITT G E, ROBERTS D N. Studies of two-phase flow patterns by simultaneous X-ray and flash photography [R]. Harwell, England: Atomic Energy Research Establishment, 1969: 1-31.
[18] 王武杰,崔国民,魏耀奇,等.倾斜气井临界携液流速预测新模型[J].石油勘探与开发,2021,48(5):1053-1060.
WANG Wujie, CUI Guomin, WEI Yaoqi, et al. A new model for predicting the critical liquid-carrying velocity in inclined gas wells [J]. Petroleum Exploration and Development, 2021, 48(5): 1053-1060.(in Chinese)
[19] 陈家琅.石油气液两相管流[M].2版.北京:石油工业出版社,2009:187-189.
CHEN Jialang. Two-phase pipe flow in petroleum industry [M]. 2nd ed. Beijing: Petroleum Industry Press, 2009:187-189.(in Chinese)
[20] BELFROID S P C, SCHIFERLI W, ALVERTS G J N, et al. Prediction onset and dynamic behavior of liquid loading gas wells [C]// SPE Annual Technical Conference and Exhibition. Colorado, USA: [s. n.], 2008: 21-24.
[21] 吴朋勃.水平井泡排举升效率模拟实验研究[D].成都:西南石油大学,2020.
WU Pengbo. Experimental study on the efficiency of liquid lifting with foam in horizontal gas well [D]. Chengdu: Southwest Petroleum University, 2020. (in Chinese)
[22] 廖开贵.930 m实验井气水两相管流流型与压降模型研究[D].成都:西南石油大学,2007.
LIAO Kaigui. Study on flow pattern and pressure drop models of gas-water two-phase pipe flow in 930 m experiment well [D]. Chengdu: Southwest Petroleum University, 2007.(in Chinese)
[23] GOVIER G W, FOGARASI M. Pressure drop in wells producing gas and condensate [J]. Journal of Canada Petroleum Technology, 1975, 14(4): 28-41.
[24] RENDEIRO C M, KELSO C M. An investigation to improve the accuracy of calculating bottomhole pressures in flowing gas wells producing liquids [C]// An Investigation to Improve the Accuracy of Calculating Bottomhole Pressures in Flowing Gas Wells Producing Liquids. Midland, USA: [s. n.], 1988: SPE-17307-MS.
[25] HAGEDORN A R, BROWN K E. Experimental study of pressure gradients occurring during continuous two-phase flow in small diameter vertical conduits [J]. Journal of Petroleum Technology, 1965, 17(4): 475-484.
[26] ZHANG Hongquan, WANG Qian, SARICA C, et al. Unified model for gas-liquid pipe flow via slug dynamics part 2: model validation [J]. Journal of Energy Recourse and Technology, 2003, 125 (4): 274-283.
[27] 刘通.产液气井两相流机理模型研究[D].成都:西南石油大学,2014.
LIU Tong. Mechanistic model for two-phase flow in liquid-cut gas wells [D]. Chengdu: Southwest Petroleum University, 2014.(in Chinese)

相似文献/References:

[1]赵金省,李天太,张明,等.聚合物驱后氮气泡沫驱油特性及效果[J].深圳大学学报理工版,2010,27(3):361.
 ZHAO Jin-sheng,LI Tian-tai,ZHANG Ming,et al.Study on the displacement characteristics of nitrogen foam flooding after polymer flooding[J].Journal of Shenzhen University Science and Engineering,2010,27(5):361.
[2]黄瑶,程时清,何佑伟,等.流量不均鱼骨状多分支水平井不稳定压力分析[J].深圳大学学报理工版,2016,33(2):202.[doi:10.3724/SP.J.1249.2016.02202]
 Huang Yao,Cheng Shiqing,He Youwei,et al.Transient pressure analysis of fishbone multi-lateral horizontal well with non-uniform flux density[J].Journal of Shenzhen University Science and Engineering,2016,33(5):202.[doi:10.3724/SP.J.1249.2016.02202]
[3]李菊花,郑斌,纪磊.凝析油临界含油饱和度定量表征新方法[J].深圳大学学报理工版,2017,34(1):82.[doi:10.3724/SP.J.1249.2017.01082]
 Li Juhua,Zheng Bin,and Ji Lei.A new method of quantitative characterization of condensate critical flow saturation[J].Journal of Shenzhen University Science and Engineering,2017,34(5):82.[doi:10.3724/SP.J.1249.2017.01082]
[4]史雪冬,岳湘安,凌生财,等.特高含水油藏深部调驱体系三维物理模拟[J].深圳大学学报理工版,2018,35(2):179.[doi:10.3724/SP.J.1249.2018.02179]
 SHI Xuedong,YUE Xiangan,LING Shengcai,et al.Physical simulation on system of deep profile control and flooding on high water cut reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(5):179.[doi:10.3724/SP.J.1249.2018.02179]
[5]陈民锋,尹承哲,王振鹏,等.直井—水平井组合井网平面井间动用规律[J].深圳大学学报理工版,2018,35(4):368.[doi:10.3724/SP.J.1249.2018.04368]
 CHEN Minfeng,YIN Chengzhe,WANG Zhenpeng,et al.Inter-well production of the horizontal-vertical composed well pattern[J].Journal of Shenzhen University Science and Engineering,2018,35(5):368.[doi:10.3724/SP.J.1249.2018.04368]
[6]刘永辉,艾先婷,罗程程,等.预测水平井携液临界气流速的新模型[J].深圳大学学报理工版,2018,35(6):551.[doi:10.3724/SP.J.1249.2018.06551]
 LIU Yonghui,AI Xianting,LUO Chengcheng,et al.A new model for predicting critical gas velocity ofliquid loading in horizontal well[J].Journal of Shenzhen University Science and Engineering,2018,35(5):551.[doi:10.3724/SP.J.1249.2018.06551]
[7]刘永辉,吴朋勃,罗程程,等.泡沫排水采气适用界限的实验研究[J].深圳大学学报理工版,2020,37(5):490.[doi:10.3724/SP.J.1249.2020.05490]
 LIU Yonghui,WU Pengbo,LUO Chengcheng,et al.Experimental study on the applicable range of surfactant injection technology[J].Journal of Shenzhen University Science and Engineering,2020,37(5):490.[doi:10.3724/SP.J.1249.2020.05490]

备注/Memo

备注/Memo:
Received: 2021-11- 09; Revised: 录用日期:2022- 05-14; Accepted: 2022- 06-16; Online (CNKI): 2022-07-20
Foundation: Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance (2020CX020203)
Corresponding author: Lecturer LUO Chengcheng. E-mail: rolsy@qq.com
Citation: LUO Chengcheng, WU Ning, WANG Hua, et al. Pressure gradient prediction of gas-liquid two-phase pipe flow in horizontal gas wells [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(5): 567-575.(in Chinese)
基金项目:中国石油-西南石油大学创新联合体科技合作资助项目(2020CX020203)
作者简介:罗程程(1989—),西南石油大学讲师、博士.研究方向:采油采气.E-mail:rolsy@qq.com
引文:罗程程,吴宁,王华,等.水平气井气液两相管流压降预测[J].深圳大学学报理工版,2022,39(5):567-575.
更新日期/Last Update: 2022-09-30