参考文献/References:
[1] 常晓宇. 2021年国内外油气行业发展报告[R].北京:国家高端智库中国石油集团经济技术研究院,2021.
CHANG Xiaoyu. 2021 Domestic and foreign oil and gas industry development report [R]. Beijing: Institute of Economics and Technology of China National Petroleum Corporation, 2021.(in Chinese)
[2] 房平亮,冉启全,鞠斌山. 致密油藏压裂开发流固耦合数值模拟[J].中国矿业,2017,26(4):140-145.
FANG Pingliang, RAN Qiquan, JU Binshan. Coupled analysis of flow and deformation in tight oil reservoir fracturing and production simulation [J]. China Mining Magazine, 2017, 26 (4): 140-145.(in Chinese)
[3] LI Yuanjun, POPA A, JOHNSON A, et al. Dynamic layered pressure map generation in a mature waterflooding reservoir using artificial intelligence approach [C]// Proceedings of the SPE Western Regional Meeting. Garden Grove California, USA: Society of Petroleum Engineers, 2018: SPE-190042-MS. doi: 10.2118/190042-MS
[4] ARPAT B G, CAERS J, HAAS A. Characterization of west-africa submarine channel reservoirs: a neural network based approach to integration of seismic data [C]// Proceedings of the SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: Society of Petroleum Engineers, 2001: SPE-71345-MS. doi: 10.2118/71345-MS
[5] HEGEMAN P S, DONG C, VAROTSIS N, et al. Application of artificial neural networks to downhole fluid analysis [J]. SPE Reservoir Evaluation & Engineering, 2009, 12(1): 8-13.
[6] POPA A S, PATEL A. Neural networks for production curve pattern recognition applied to cyclic steam optimization in diatomite reservoirs [C]// Proceedings of the SPE Western Regional Meeting. Bakersfield. California, USA: Society of Petroleum Engineers, 2012: SPE-153185-MS. doi: 10.2118/153185-MS
[7] MAKHOTIN I, KOROTEEV D, BURNAEV E. Gradient boosting to boost the efficiency of hydraulic fracturing [J]. Journal of Petroleum Exploration and Production Technology. 2019, 9(3): 1919-1925.
[8] LIU Kailei, XU Boyue, KIM C et al. Well performance from numerical methods to machine learning approach: applications in multiple fractured shale reservoirs [J]. Geofluids, 2021, 2021: 1-13.doi:10.1155/2021/316945
[9] SONG Xuanyi, LIU Yuetian, XUE Liang, et al. Time-series well performance prediction based on long short-term memory (LSTM) neural network model [J]. Journal of Petroleum Science and Engineering. 2020, 186:106682.
[10] KALAM S, ABU-KHAMSIN S A, AL-YOUSEF H Y, et al. A novel empirical correlation for waterflooding performance prediction in stratified reservoirs using artificial intelligence [J]. Neural Computing and Applications. 2021, 33(7): 2497-2514.
[11] PAL M. On application of machine learning method for history matching and forecasting of times series data from hydrocarbon recovery process using water flooding [J]. Petroleum Science and Technology. 2021, 39(15/16):519-549.
[12] DONG Peng, LIAO Xinwei, CHEN Zhiming, et al. An improved method for predicting CO2 minimum miscibility pressure based on artificial neural network [J]. Advances in Geo-Energy Research. 2019, 3(4): 355-364.
[13] 张烈辉,贾鸣,张芮菡,等.裂缝性油藏离散裂缝网络模型与数值模拟[J].西南石油大学学报自然科学版,2017,39(3):121-127.
ZHANG Liehui, JIA Ming, ZHANG Ruihan, et al. Discrete fracture network modeling and numerical simulation of fractured reservoirs [J]. Journal of Southwest Petroleum University Science and Technology Edition, 2017, 39 (3): 121-127.(in Chinese)
[14] 袁彬,苏玉亮,丰子泰,等.体积压裂水平井缝网渗流特征与产能分布研究[J].深圳大学学报理工版,2013,30(5):545-550.
YUAN Bin, SU Yuliang, FENG Zitai, et al. Productivity distribution and flow characteristics of volume-fractured horizontal wells [J]. Journal of Shenzhen University Science and Engineering, 2013, 30(5): 545-550.(in Chinese)
[15] 杨子清,陈文龙,杨军侠,等.分段压裂水平井裂缝形态优化及产能特征研究[J].石油天然气学报,2014,36(1):99-103.
YANG Ziqing, CHEN Wenlong, YANG Junxia, et al. The study on fracture morphology optimization and productivity characteristics of staged fractured horizontal wells [J]. Journal of Oil and Gas Technology, 2014, 36(1): 99-103.(in Chinese)
[16] 张剑.基于代理模型技术的高速列车性能参数设计及优化[D].成都:西南交通大学,2015.
ZHANG Jian. The high-speed train performance parameter design and optimization based on surrogate model technology [D]. Chengdu: Southwest Jiaotong University, 2015.(in Chinese)
[17] SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series [M]// BARU C, HUAN J, KHAN L, et al. IEEE International Conference on Big Data. 2019: 3285-3292
[18] CALVETTE T, GURWICZ A, ABREU A C, et al. Forecasting smart well production via deep learning and data driven optimization [C]// Proceedings of the Offshore Technology Conference Brasil. Rio de Janeiro, Brazil: Society of Petroleum Engineers, 2019: OTC-29861-MS. doi: 10.4043/29861-MS
[19] GOODFELLOW I, COURVILLE A. Deep learning [M]. [S.l.]: MIT Press, 2016.
[20] ALIYUDA K, HOWELL J, HUMPHREY E. Impact of geological variables in controlling oil-reservoir performance: an insight from a machine-learning technique [J]. SPE Reservoir Evaluation & Engineering, 2020, 23(4): 1314-1327.
[21] 王文东,石梦翮,庄新宇,等.基于机器学习的井位及注采参数联合优化方法[J].深圳大学学报理工版,2022,39(2):126-133.
WANG Wendong, SHI Menghe, ZHUANG Xinyu, et al. Joint optimization method of well location and injection-production parameters based on machine learning [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(2): 126-133.(in Chinese)
相似文献/References:
[1]陈民锋,赵晶,赵梦盼,等.低渗透稠油油藏储量有效动用界限研究[J].深圳大学学报理工版,2013,30(No.2(111-220)):210.[doi:10.3724/SP.J.1249.2013.02210]
Chen Minfeng,Zhao Jing,Zhao Mengpan,et al.Study on limits of effective drive in low-permeability heavy-oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2013,30(5):210.[doi:10.3724/SP.J.1249.2013.02210]
[2]郭和坤,刘强,李海波,等.四川盆地侏罗系致密储层孔隙结构特征[J].深圳大学学报理工版,2013,30(No.3(221-330)):306.[doi:10.3724/SP.J.1249.2013.03306]
Guo Hekun,Liu Qiang,Li Haibo,et al.Microstructural characteristics of the Jurassic tight oil reservoirs in Sichuan Basin[J].Journal of Shenzhen University Science and Engineering,2013,30(5):306.[doi:10.3724/SP.J.1249.2013.03306]
[3]袁彬,苏玉亮,丰子泰,等.体积压裂水平井缝网渗流特征与产能分布研究[J].深圳大学学报理工版,2013,30(No.5(441-550)):545.[doi:10.3724/SP.J.1249.2013.05545]
Yuan Bin,Su Yuliang,Feng Zitai,et al.Productivity distribution and flow characteristics of volume-fractured horizontal wells[J].Journal of Shenzhen University Science and Engineering,2013,30(5):545.[doi:10.3724/SP.J.1249.2013.05545]
[4]陈民锋,李晓风,王敏,等.深水油田高饱和油藏能量合理补充时机研究[J].深圳大学学报理工版,2013,30(No.6(551-660)):649.[doi:10.3724/SP.J.1249.2013.06649]
Chen Minfeng,Li Xiaofeng,Wang Min,et al.Reasonable opportune moment of energy supplement of high saturation reservoirs in deepwater oilfield[J].Journal of Shenzhen University Science and Engineering,2013,30(5):649.[doi:10.3724/SP.J.1249.2013.06649]
[5]廉培庆,陈志海,董广为,等.水平井与非均质盒式油藏耦合模型[J].深圳大学学报理工版,2015,32(3):266.[doi:10.3724/SP.J.1249.2015.03266]
Lian Peiqing,Chen Zhihai,Dong Guangwei,et al.A coupling model for horizontal well in heterogeneous box-shaped reservoir[J].Journal of Shenzhen University Science and Engineering,2015,32(5):266.[doi:10.3724/SP.J.1249.2015.03266]
[6]李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
Li Shuai,Ding Yunhong,Liu Guangfeng,et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J].Journal of Shenzhen University Science and Engineering,2017,34(5):98.[doi:10.3724/SP.J.1249.2017.01098]
[7]陈民锋,王兆琪,张琪琛,等.启动压力影响下注采井间有效驱替规律[J].深圳大学学报理工版,2017,34(1):91.[doi:10.3724/SP.J.1249.2017.01091]
Chen Minfeng,Wang Zhaoqi,Zhang Qichen,et al.Effective displacement rules for interwell with threshold pressure[J].Journal of Shenzhen University Science and Engineering,2017,34(5):91.[doi:10.3724/SP.J.1249.2017.01091]
[8]赵振峰,唐梅荣,杜现飞,等.压裂水平井非稳态产能分析与影响因素研究——以鄂尔多斯长庆致密油为例[J].深圳大学学报理工版,2017,34(6):647.[doi:10.3724/SP.J.1249.2017.06647]
Zhao Zhenfeng,Tang Meirong,Du Xianfei,et al.Factors affecting rate transient of fractured horizontal well in tight oil reservoir——Erdos Basin Changqing tight oil[J].Journal of Shenzhen University Science and Engineering,2017,34(5):647.[doi:10.3724/SP.J.1249.2017.06647]
[9]张贤松,谢晓庆,康晓东,等.非均质油藏聚合物驱注入参数优化方法改进与应用[J].深圳大学学报理工版,2018,35(4):362.[doi:10.3724/SP.J.1249.2018.04362]
ZHANG Xiansong,XIE Xiaoqing,KANG Xiaodong,et al.An improved optimization method and application for injection parameter of polymer flooding for heterogeneous reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(5):362.[doi:10.3724/SP.J.1249.2018.04362]
[10]张继成,范佳乐,匡力,等.一种预测特高含水期开发指标的联解法[J].深圳大学学报理工版,2018,35(6):558.[doi:10.3724/SP.J.1249.2018.06574]
ZHANG Jicheng,FAN Jiale,KUANG Li,et al.An integrated method for predicting the development index of extra-high water cut period[J].Journal of Shenzhen University Science and Engineering,2018,35(5):558.[doi:10.3724/SP.J.1249.2018.06574]
[11]毛新军,胡广文,张晓文,等.双重介质致密油藏油水两相瞬态流动模拟方法[J].深圳大学学报理工版,2021,38(6):572.[doi:10.3724/SP.J.1249.2021.06572]
MAO Xinjun,HU Guangwen,ZHANG Xiaowen,et al.Simulation method of oil-water two-phase transient flow in dual-porosity system in tight reservoir[J].Journal of Shenzhen University Science and Engineering,2021,38(5):572.[doi:10.3724/SP.J.1249.2021.06572]