[1]郝昕,甘林,胡世鹏,等.高纯锗单晶的制备与位错密度分析[J].深圳大学学报理工版,2022,39(5):504-508.[doi:10.3724/SP.J.1249.2022.05504]
 HAO Xin,GAN Lin,HU Shipeng,et al.Preparation of high purity germanium single crystal and analysis of dislocation density[J].Journal of Shenzhen University Science and Engineering,2022,39(5):504-508.[doi:10.3724/SP.J.1249.2022.05504]
点击复制

高纯锗单晶的制备与位错密度分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第5期
页码:
504-508
栏目:
材料科学
出版日期:
2022-09-16

文章信息/Info

Title:
Preparation of high purity germanium single crystal and analysis of dislocation density
文章编号:
202205003
作者:
郝昕 甘林 胡世鹏 罗奇 吴正新 钟健 赵海歌 孙慧斌
深圳大学物理与光电工程学院,广东深圳 518060
Author(s):
HAO Xin GAN Lin HU Shipeng LUO Qi WU Zhengxin ZHONG Jian ZHAO Haige and SUN Huibin
College of Physics and Optoelectronic Engineering, ShenzhenUniversity, Shenzhen 518060, Guangdong Province, P. R. China
关键词:
半导体材料晶体高纯锗制备高纯锗探测器单晶生长位错密度直拉法
Keywords:
semiconductor material crystal high purity germanium preparation high purity germanium detector single crystal growth dislocation density Czochralski method
分类号:
TN304.1
DOI:
10.3724/SP.J.1249.2022.05504
文献标志码:
A
摘要:
高纯锗探测器在辐射探测领域具有重要地位.经过区熔提纯和单晶生长2个阶段,成功制备了纯度为13N、位错密度介于100~10 000 cm-2之间的高纯锗.其中,区熔实验使用自制水平区熔炉,在高纯氢气环境下,通过20~50次区熔以达到提纯要求.单晶生长采用直拉法,在高纯氢气环境下,沿[100]晶向生长,单晶有效长度 > 50 mm,有效直径 > 30 mm.采用浸蚀法测量位错密度,利用酸性腐蚀液腐蚀锗单晶片(100)晶面,读取位错腐蚀坑数量.结果显示,距单晶棒头部25、50和72 mm处的位错密度分别为2 537、3 425和4 075 cm-2,表明在晶锭头部72 mm前,位错密度满足高纯锗探测器制备的要求.研究可为高纯锗单晶的制备提供参考.
Abstract:
High purity germanium detector plays an important role in the field of radiation detection. High purity germanium with 13N purity and dislocation density between 100 ~ 10 000 cm-2 was successfully prepared through zone melting purification and single crystal growth. In the zone melting experiment, the self-made horizontal zone furnace is used to achieve the purification requirements through 20 ~ 50 times of zone melting in the environment of high-purity hydrogen. The single crystal is grown by Czochralski method along the [100] direction in high-purity hydrogen environment with effective length > 50 mm and effective diameter > 30 mm. The dislocation density measurement adopts the etching method. The acid etching solution is used to etch the crystal (100) surface and the number of the etch pits is counted. The results show that the dislocation densities at 25, 50 and 72 mm from the head of the single crystal are 2 537, 3 425 and 4 075 cm-2 respectively. These results indicate that the dislocation density before 72 mm meets the requirements for the preparation of high-purity germanium detectors. The research can provide reference for the preparation of high purity germanium single crystal.

参考文献/References:

[1] 陈伯显,张智. 核辐射物理及探测学[M]. 哈尔滨:哈尔滨工业大学出版社,2011.
CHEN Boxian, ZHANG Zhi. Nuclear Radiation physics and detection [M].Harbin: Harbin Engineering University Press, 2011.(in Chinese)
[2] 杨丽桃,刘书魁,岳骞.中国暗物质实验研究进展[J].中国基础科学,2020,22(4):14-21.
YANG Litao, LIU Shukui, YUE Qian. The recent progress of China dark matter experiment [J]. China basic science, 2020, 22(4): 14-21.(in Chinese)
[3] YANG G, GUAN Y T, JIAN F Y, et al. Zone refinement of germanium crystals [J]. Journal of Physics: Conference Series, 2015, 606: 012014.
[4] WANG Guojian, AMMAN Mark, MEI Hao, et al. Crystal growth and detector performance of large size high-purityge crystals [J]. Materials Science in Semiconductor Processing, 2015, 39: 54-60.
[5] SIMOEN E, CLAUWS P, VENNIK J. DLTS of grown-in dislocations in p- and n-type high-purity germanium [J]. Solid State Communications, 1985, 54(12): 1025-1029.
[6] 介万奇. 晶体生长原理与技术[M]. 北京:科学出版社,2019.
JIE Wanqi. Principle and technology of crystal growth [M]. Beijing: Science Press, 2019.(in Chinese)
[7] GRADWOHL K P, JUDA U, SUMATHI R R. The impact of the dislocation distribution and dislocation type on the charge carrier lifetime in Czochralski germanium single crystals [J]. Journal of Crystal Growth, 2021, 573: 126285.
[8] GRADWOHL K P, RODER M, DANILEWSKY A N, et al. Investigation of the dislocation structure in Czochralski germanium crystals grown in [211] and [110] growth directions [J]. CrystEngComm, 2021, 23(23): 4116-4124.
[9] 郭立平,罗凤凤,于雁霞.核材料辐照位错环[M].北京:国防工业出版社,2017.
GUO Liping, LUO Fengfeng, YU Yanxia. Dislocation loops in irradiated nuclear materials [M]. Beijing: National Defense Industry Press, 2017.(in Chinese)
[10] EBERTH J, EBERTH, SIMPSON J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors [J]. Progress in Particle and Nuclear Physics, 2008, 60(2): 283-337.
[11] GLASOW P A , HALLER E E. The effect of dislocation on the energy resolution of high-purity germanium detectors [J]. IEEE Transactions on Nuclear Science, 1976, 23(1): 92-96.
[12] CLAIN S. 半导体锗材料与器件[M].北京:冶金工业出版社, 2010.
CLAIN S. Semiconductor material and device [M]. Beijing: Metallurgical Industry Press, 2010.(in Chinese)
[13] 郝昕,孙慧斌,赵海歌,等. 高纯锗多晶材料区熔速度优化的数值模拟[J].深圳大学学报理工版,2016,33(3):248-253.
HAO Xin, SUN Huibin, ZHAO Haige, et al. Study on the optimization of zone refining for ultra-pure germanium polycrystalline material [J].Journal of Shenzhen University Science and Engineering, 2016, 33(3): 248-353.(in Chinese)
[14] 崔树范. 半导体中的氢[M].北京:科学出版社,2018.
CUI Shufan. Hydrogen in semiconductors [M].Beijing: Science Press, 2018.(in Chinese)
[15] GB/T 5252—2020锗单晶位错密度的测试方法[S].
GB/T 5252—2020 Measurement method of dislocation density in germanium single crystal [S].(in Chinese)
[16] 曹佳辉,朱益凡,曾良鹏,等. (100)锗单晶片的位错腐蚀研究[J]. 浙江理工大学学报自然科学版,2017,37:657-661.
CAO Jiahui, ZHU Yifan, ZENG Liangpeng, et al. Study on dislocation of (100) single-crystalline germanium by etching [J]. Journal of Zhejiang Sci-Tech University Natural Sciences, 2017, 37: 657-661.(in Chinese)
[17] DADZIS K, MENZEL R, JUDA U, et al. Characterization of silicon crystals grown from melt in a granulate crucible [J]. Journal of Electronic Materials, 2020, 49: 5120-5132.
[18] WANG G, GUAN Y, MEI H, et al. Dislocation density control in high-purity germanium crystal growth [J]. Journal of Crystal Growth, 2014, 393(1): 54-58.

相似文献/References:

[1]郑瑞生,武红磊.氮化铝体单晶生长技术研究进展[J].深圳大学学报理工版,2010,27(4):433.
 ZHENG Rui-sheng and WU Hong-lei.Development of bulk AlN single-crystal growth technology[J].Journal of Shenzhen University Science and Engineering,2010,27(5):433.
[2]武红磊,郑瑞生,孟姝,等.碳硅共掺氮化铝的p型掺杂效率研究[J].深圳大学学报理工版,2011,28(No.2(095-188)):109.
 WU Hong-lei,ZHENG Rui-sheng,MENG Shu,et al.Research on p-type doping efficiency in C∶Si codoped AlN[J].Journal of Shenzhen University Science and Engineering,2011,28(5):109.
[3]武红磊,郑瑞生,闫征,等.温度场分布对氮化铝晶体生长习性的影响[J].深圳大学学报理工版,2012,29(No.6(471-580)):487.[doi:10.3724/SP.J.1249.2012.06487]
 WU Hong-lei,ZHENG Rui-sheng,YAN Zheng,et al.Effect of temperature distribution on growth habit of AlN crystal[J].Journal of Shenzhen University Science and Engineering,2012,29(5):487.[doi:10.3724/SP.J.1249.2012.06487]

备注/Memo

备注/Memo:
Received: 2021-07-09; Accepted: 2021-12-30; Online (CNKI): 2022-03-01
Foundation: Youth Science Foundation Project of National Natural Science Foundation of China (11905136); Natural Science Foundation of Guangdong Province (2018A030310636); Research and Development Projects in Key Areas of Guangdong Province (2020B040420005)
Corresponding author: Associate professor HAO Xin. E-mail: haox@szu.edu.cn
Citation: HAO Xin, GAN Lin, HU Shipeng, et al. Preparation of high purity germanium single crystal and analysis of dislocation density [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(5): 504-508.(in Chinese)
基金项目:国家自然科学青年基金资助项目(11905136);广东省自然科学基金资助项目(2018A030310636);广东省重点领域研发计划资助项目(2020B040420005)
作者简介:郝昕(1980—),深圳大学副教授、博士.研究方向:半导体核辐射探测器研制.E-mail: haox@szu.edu.cn
引 文:引用格式:郝昕,甘林,胡世鹏,等.高纯锗单晶的制备与位错密度分析[J].深圳大学学报理工版,2022,39(5):504-508.
更新日期/Last Update: 2022-09-30